OSFP MSA

Specification for

OSFP OCTAL SMALL FORM FACTOR PLUGGABLE MODULE

Rev 4.1

August 2nd, 2021

Abstract:

This specification defines the electrical connectors, electrical signals and power supplies, mechanical and thermal requirements of the OSFP Module, connector and cage systems. The OSFP Management interface is described in a separate document, Common Management Interface Specification for 8/16X Pluggable Transceivers.

This document provides a common specification for systems manufacturers, system integrators, and suppliers of modules.

Points of Contact:

Editor	Brian Park	bpark@arista dot com
Associate Editor	Warren Meggitt	wmeggitt@arista dot com
Chair	Andreas Bechtolsheim	avb@arista dot com
Co-Chair	Chris Cole	chris.cole@II-VI dot com
Co-Chair	Brian Kirk	brian.kirk@amphenol-tcs dot com

Limitations on the Use of this Information:

This specification is provided "AS IS" with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. The authors disclaim all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification. In no event shall the OSFP MSA participants be liable for any direct, indirect, special, exemplary, punitive, or consequential damages, including, without limitation, lost profits, even if advised of the possibility of such damages.

This specification may contain or require the use of intellectual property owned by others. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein, except that a license is hereby granted to download, reproduce and distribute this document under the provisions of the OSFP MSA Agreement.

Revision History:

- Rev 4.1 8/2/2021 Cage latch flap radius is enlarged. Cage shoulder keepout added to the stacked SMT cage (Sec 5). Cage assembly tolerance is relaxed (Sec 5).
- Rev 4.0 5/28/2021 Type 2 and 3 modules with bigger front are added (Fig 3-3). Module latch release feature is further clarified (Sec 3.7). Optional riding heatsink is added (Sec. 4.5). Case temperature location requirement and connector environmental requirement are added (Sec. 8). OSFP-RHS nose shape is updated to avoid a potential interference with a connector (Fig 9-8). OSFP-RHS heatsink contact area is adjusted (Sec. 9). 800G OSFP specification is added, with PMDs (Sec. 10.2) and electrical information (Sec. 11.4). More optical connector configurations are added (Section 10.3). Max current to the module is increased to 10A, supporting 30W module (Sec. 11.6). Lower power mode is added to allow up to 2W (Table 11-8).
- Rev 3.0 3/14/2020 Specifications for the stacked SMT connector and its cage are added to section 5. Reference design of cage vent holes are added to SMT single row cage. Universal MIS is added to the reference section.
- Rev 2.0 1/14/2019 Major updates including: Touch temperature (section 3.9), stacked cage/connector (section 5), OSFP-RHS (section 8) and informative pull tab length (Appendix B) are added. Impedance requirement for the OSFP is relaxed (section 7.2). Management interface speed is increased (Section 10.5). Power class definition are updated, with increase of max power to 21.1W (section 10.6). GD&T of the drawings are updated. MPO-12 two row and MPO-16 lane assignments are added (section 9.8).
- Rev 1.12 8/1/2017 Editorial updates, as of: Note 1 in the Figure 1 is clarified with "0.00mm max from top". PMD in the section 7 and titles are updated, including Figure 49 and 50 the optical receiver/transmitter lane numbers are revised to avoid any confusion. In section 8, word "must" replaced with "shall". Legal claim at page 1 "fitness or any.." typo fixed as "fitness for any..".
- Rev 1.11 6/26/2017 Editorial updates, as of: Typo in the figure number in the figure table of contents fixed; Revision history added.
- Rev 1.1 6/7/2017 Minor updates, as of: MPO 24 lane assignment (section 7.7.3) removed, to remove conflict with other industry conventions ; PCB location with respect to the module is specified with MMC modifier, to provide better dimensional control (Figure 8) ; Test ambient condition (20C, sea level) specified for the clarification in the module airflow impedance (Figure 42) ; In section 8.5, "optional" added to the fast and high-speed bus mode to clarify that those modes are optional ; In table 8-6, T_hplp description is updated for better clarification of the feature ; Power filter inductance adjusted to increase the power supply margin (Figure 59)

Rev 1.0 3/17/2017 Initial Release

Table of Contents

1	Sco	ре	10
2	Refe	erences	10
3	OSF	P Module Mechanical Specification	12
	3.1	Overview	12
	3.2	OSFP Nose	15
	3.3	Heat Sink, Closed Top	18
	3.4	Heat Sink, Open Top	
	3.5	Card-edge Design (Module Electrical Interface)	
	3.6	Contact Pad Plating Requirements	
	3.7	Module Latch Feature	
	3.8	Module Color Code	
	3.9	Touch Temperature	25
4 Sr	Sing	gle Row Surface Mount Technology OSFP Connector and Its Cage: Mo cation	echanical 26
-	4.1	Overview	
	4.2	Cage Dimensions and Positioning Pin	
	4.3	EMI Finger Pitches	
	4.4	Ventilation Hole, Key and Stop	
	4.5	Riding Heatsink	
	4.6	Host PCB Layout – 1x1 Cage	
	4.7	Host PCB Layout – 1x4 Cage	
	4.8	Latch Flaps in Cage	
	4.9	Bezel Panel Cut-Out	
	4.10	Single Row SMT Connector	39
	4.11	Blank Plug	40
5	Stac	cked Surface Mount Technology Connector and Its Cage	
	5.1	Overview	
	5.2	Cage Dimensions and Positioning Pin	
	5.3	Ventilation Holes	
	5.4	Host PCB Layout – 2x1 Cage	
	5.5	Host PCB Layout – 2x4 Cage	
	5.6	PCB Thickness and Footprint for Belly-to-Belly Application	
	5.7 5.8	Stacked SMT Connector Bezel Panel Cut-Out	
6		ss-fit Stacked OSFP Connector and cage Mechanical Specification	
	6.1	Overview Cage Dimensions and Positioning Pin	
	6.2	Ventilation Holes	
	6.3 6.4	Host PCB Layout – 2x1 Cage	
	6.5	Host PCB Layout – 2x1 Cage Host PCB Layout – Ganged Stacked Cage	
	6.6	Bezel Panel Cut-out	
	6.7	Electrical Connector for Stacked Cage (Press-fit)	
7		g-in and Removal of an OSFP Module	
	7.1	Insertion, Extraction, and Retention Forces for an OSFP Module	
	7.2	Durability	62

8	Therr	nal Performance	62
8	3.1	OSFP Module Thermal Requirements	62
8		OSFP Connector Thermal Requirements	
8		OSFP Module Airflow Impedance Curve	
8	3.4	Module Airflow Impedance Test Jig	63
		P Riding Heat Sink Module and Cage Mechanical Specification	
		OSFP-RHS Module Mechanical Specification	
		OSFP-RHS Paddle Card	
		OSFP-RHS Thermal Interface Surface Requirements	
		OSFP-RHS Cage Mechanical Specification	
		Maximum Heat Sink Down Force for an OSFP-RHS Cage	
ĝ).7	Custom Height OSFP-RHS	75
10	Ontio	al PMD Block Diagrams	76
		400G PDM Block Diagrams	
I	10.1		
	10.1		
	10.1		
	10.1		
	10.1		
	10.1	· · ·	
	10.1		
1		800G PMD Block Diagrams	
I	10.2		
	10.2		
	10.2		
	10.2		
	10.2		
	10.2	1	
	10.2	•	
1		OSFP Optical Interface	
I	10.3	•	
	10.3		
	10.3	1	
	10.3		
	10.3		
	10.3		
	10.3	•	
	10.3		
	10.3		
	10.3		
	10.3		
	10.3		
	10.3		
	10.3		
11	Elect	rical Interface	93
1	1.1	Module Electrical Connector	93
1	1.2	Pin Descriptions	94
1	1.3	Pin List	94

11.4 High-Speed Signals	
11.5 Low-Speed Signals	
11.5.1 SCL and SDA	
11.5.2 INT/RSTn	
11.5.3 LPWn/PRSn	
11.5.4 Timing for control and status functions	
11.5.5 OSFP module power up behavior	
11.5.6 OSFP module reset behavior	101
11.6 Power	102
11.6.1 Power Filter	
11.6.2 Power Electronic Circuit Breaker (optional)	104
11.7 OSFP Host Board and Module Block Diagram	105
11.8 Electrostatic Discharge (ESD)	
Appendix A. OSFP Module LED (Informative)	107
A.1 LED Indicator and its Scheme	
Appendix B. OSFP Pull Tab Length (Informative)	108
B.1 OSFP Pull Tab Length	108

Append	ix C.	OSFP with heatsink on the bottom	109
C.1	Bottor	n heatsink dimensions	109

Table of Figures

Figure 3-1: OSFP module with different connectors (Duplex LC, MPO, CS [®] , Copper) Figure 3-2: OSFP overall dimensions	
Figure 3-3: Size of module front, for Type 1, Type 2 and Type 3 OSFP	
Figure 3-4: OSFP label reference location	.14
Figure 3-5: OSFP corner radius	
Figure 3-6: OSFP nose, side view	
Figure 3-7: OSFP nose, side view, no component area	.16
Figure 3-8: OSFP nose, side view, location of the forward stop	
Figure 3-9: OSFP nose, bottom view	
Figure 3-10: OSFP nose, bottom view, optional signal pad inspection holes	
Figure 3-11: OSFP nose, top view: dimension for ventilation holes	
Figure 3-12: Signal pad location to module (left: top view, right: bottom view)	
Figure 3-13: Heat sink, top view	
Figure 3-14: Examples of heat sink design	
Figure 3-15: Flat top heatsink details, rear of plug	
Figure 3-16: Open top heat sink (Isometric view)	
Figure 3-17: Heat sink location	
Figure 3-18: Heat sink fin pitch	
Figure 3-19: OSFP module pc board (card-edge)	
Figure 3-20: OSFP card-edge, detail of power pad (pads 45/46)	
Figure 3-21: OSFP card-edge, detail of power pad (pads 15/16)	
Figure 3-22: Latch pocket location Figure 3-23: Latch release max width and latching pocket round	
Figure 3-24: Latching pocket length	
Figure 3-25: Latch plane corner radius and release details	
Figure 4-1: 1x1 and 1x4 cage, host PCB and panel	
Figure 4-2: OSFP module in a 1x1 cage	
Figure 4-3: Cage positioning pins and forward stop	
Figure 4-4: Port internal width and height	
Figure 4-5: Side view of a 1x1 cage with vertical cage dimensions	
Figure 4-6: Side view of a 1x1 cage with axial reference dimensions	
Figure 4-7: Length of the compliant pins into the board, for belly-to-belly application	
Figure 4-8: Internal EMI finger, top and bottom	
Figure 4-9: Key and stop	
Figure 4-10: Rear ventilation holes, three example designs	
Figure 4-11: Top ventilation holes, two example designs	.30
Figure 4-12: OSFP with a riding heatsink (above) and cutout on the cage for a riding heats	sink
in OSFP (bottom)	.31
Figure 4-13: Heat sink leading edge, reference design	
Figure 4-14: Host PCB layout for 1x1 cage	
Figure 4-15: Host PCB layout, details	.33
Figure 4-16: Solder ring for belly-to-belly application	
Figure 4-17: Host PCB layout for 1x4 cage	
Figure 4-18: Comparison of host PCB layout between 1x1, 1x2 and 1x4	
Figure 4-19: Latch feature, left and right side	.37
Figure 4-20: Latch flap, cross-sectional view from top	
Figure 4-21: Bezel design and location for 1x1 cage	
Figure 4-22: Bezel design for 1x4 cage	
Figure 4-23: Surface mount connector	.39
Figure 4-24: OSFP blank plug (reference design)	.40

Figure 5-1: Stacked SMT 2x1 cage with host PCB and the panel	.41
Figure 5-2: Cage positioning pins and forward stop	.42
Figure 5-3: Port internal width, height and vertical pitch	.42
Figure 5-4: Side view of 2x1 cage with vertical cage dimensions	.43
Figure 5-5: Length of the compliance pins at the middle, for belly-to-belly applications	
Figure 5-6: Top ventilation, example design	
Figure 5-7: Side ventilation, example design	
Figure 5-8: Rear ventilation, example design	
Figure 5-9: Host PCB Layout for 2x1 SMT cage	
Figure 5-10: Host PCB layout, details	
Figure 5-11: Layout for peg, retaining feature and ground pad	
Figure 5-12: Details of optional solder ring (left) and cage pin keepout (right)	
Figure 5-13: Host PCB layout for 2x4 cage	
Figure 5-14: Comparison of SMT stacked 2x1, 2x2 and 2x4	
Figure 5-15: PCB thickness for belly-to-belly applications	
Figure 5-16: The host PCB layout for the 2x1 belly-to-belly applications	
Figure 5-17: Stacked SMT connector, front view	
Figure 5-18: Stacked SMT connector, side view	
Figure 5-19: SMT tail direction	
Figure 5-20: Example of actual connector design	
Figure 5-21: Bezel design and location for SMT 2x1 Cage	
Figure 6-1: Overview of stacked cage, 2x1 and 2x6	
Figure 6-2: Stacked cage positioning pins and forward stop	
Figure 6-3: Stacked cage, port internal size, pitch and wall thickness	
Figure 6-4: Cage with OSFP module, reference dimensions	
Figure 6-5: Overview of ventilation holes in the stacked cage	
Figure 6-6: Ventilation holes at the back of the cage	
Figure 6-7: Ventilation holes in the horizontal divider and bottom	
Figure 6-8: Ventilation holes in the side of the cage, and vertical divider	
Figure 6-9: Ventilation holes in the top (above view) and side (bottom view) of the cag	
	•
alternative example Figure 6-10: Host PCB layout for stacked connector	
Figure 6-11: Host PCB pins for stacked connector	
Figure 6-12: Host PCB layout for stacked ganged cage (shown with 2x6)	
Figure 6-13: Bezel design and location for 2x1 cage	
Figure 6-14: Bezel design for 2x6 cage	
Figure 6-15: Stacked connector, side view	
Figure 6-16: Stacked connector, front and back view	
Figure 6-17: Stacked connector, bottom view	
Figure 8-1: Target range of impediment to airflow of an OSFP module (20C, Sea Level).	
Figure 8-2: Impedance test setup for Type 1 and Type 2 OSFP module (Shown with Ty	
1)	
Figure 8-3: Impedance test jig for Type 1 and Type 2 OSFP	
Figure 8-4: Impedance test jig for Type 3 OSFP	
Figure 8-5: Impedance test setup for Type 1, Type 2 and Type 3 OSFP	
Figure 9-1: Side view of a typical OSFP (top) and a typical OSFP-RHS (bottom)	
Figure 9-2: OSFP-RHS cage only (left) and OSFP-RHS cage with module and riding he	
sink (right)	
Figure 9-3: Overview of the OSFP-RHS and heat sink contact area	
Figure 9-4: Corner radius of OSFP-RHS in back view	
Figure 9-5: OSFP-RHS forward stop	
Figure 9-6: Connector keep out area in side view	68

Figure 9-7: Nose of OSFP-RHS	.69
Figure 9-8: Paddle card position (bottom view of module) and module nose width	.69
Figure 9-9: Location of inspection holes	
Figure 9-10: Signal pad location with respect to the forward stop	
Figure 9-11: Latch pocket details of an OSFP-RHS	
Figure 9-12: Paddle card of an OSFP-RHS	
Figure 9-13: Cage positioning pins and forward stop	
Figure 9-14: Side view of a 1x1 cage with vertical cage dimensions	
Figure 9-15: Keying feature in OSFP-RHS	.73
Figure 9-16: Internal width and centerline datum	.73
Figure 9-17: Latch feature for OSFP-RHS cage	
Figure 9-18: Cutout for a riding heat sink in the OSFP-RHS cage	
Figure 9-19: Bezel cutout for the OSFP-RHS cage	
Figure 10-1: Block diagram for 400G-DR4	
Figure 10-2: Block diagram for 400G-SR8	
Figure 10-3: Block diagram for 400G-SR4.2	
Figure 10-4: Block diagram for 400G-FR4	
Figure 10-5: Block diagram for 400G-FR8/LR8	
Figure 10-6: Block diagram for 2x200G-2xFR4	
Figure 10-7: Block diagram for 2×100G-2xCWDM4	
Figure 10-8: Block diagram for 800G OSFP optical PMD for parallel fiber, e.g. 800G D	R8
Figure 10-9: Block diagram for 800G-BD4.2	
Figure 10-10: Block diagram for 2x400G FR4	
Figure 10-11: Block diagram for 800G OSFP optical PMD for duplex fiber, e.g. 800G F	
Figure 10-12: Block diagram for 800G OSFP optical PMD for duplex fiber, e.g. 800	
FR8/LR8	
Figure 10-13: Block diagram for 800G OSFP optical PMD for parallel fiber, e.g. 800G S	
Figure 10-14: Block diagram for 2x400G SWDM4	
Figure 10-15: Optical receptacle and channel orientation for duplex LC connector	
Figure 10-16: Optical receptacle and channel orientation for MPO-12 connector	
Figure 10-17: Optical receptacle and channel orientation for MPO-12 for 400G-SR4.2	
Figure 10-18: Optical receptacle and channel orientation for MPO-16 connector	
Figure 10-19: Optical receptacle and channel orientation for MPO-12 Two Row connect	
Figure 10-20: Optical receptacle and channel orientation for MXC connector	
Figure 10-21: Optical receptacle and channel orientation for Dual Mini-LC	
Figure 10-22: Optical receptacle and channel orientation for Dual LC, with an example	
Figure 10-23: LC connector size requirement per given belly-to-belly pitch	
Figure 10-24: Optical receptacle and channel orientation for dual CS [®] connector	
Figure 10-25: Optical receptacle and channel orientation for quad MDC connector for 40	
DR-4	
Figure 10-26: Optical receptacle and channel orientation for quad MDC connector for 400	
SR4.2	
Figure 10-27: Optical receptacle and channel orientation for Quad SN [®] connector for 400	
DR4	
Figure 10-28: Optical receptacle and channel orientation for Quad SN [®] connector for 40	
•	
SR4.2 Figure 10-29: Optical receptacle and channel orientation for Dual MPO connector	
י וקטוב דט-בס. סףווטמו ופטבףומטוב מווט טומוווופו טוופוונמווטודוטו סעמו ואדס טטווופטוטו	.09
Figure 10-30: MPO connector size requirement per given belly-to-belly pitch	

Figure 10-31: Example of an OSFP module with Dual MPO connector Figure 10-32: Optical receptacle and channel orientation for Dual MXC connector	
Figure 10-33: Example of an OSFP module with Dual MXC connector	
Figure 10-34: Optical receptacle and channel orientation for 8 x MDC connector	
Figure 10-35: Example of a Type 3 OSFP with 8 x MDC connector	91
Figure 10-36: Optical receptacle and channel orientation for 8 x SN [®] connector	
Figure 10-37: Example of a Type 3 module with 8 x SN [®] connector	92
Figure 11-1: OSFP module pinout	93
Figure 11-2: INT/RSTn voltage zones	97
Figure 11-3: INT/RSTn circuit	98
Figure 11-4: LPWn/PRSn voltage zones	99
Figure 11-5: LPWn/PRSn circuit	100
Figure 11-6: Host board power filter circuit	104
Figure 11-7: Host board and Module block diagram	105
Figure B-1: Type 1 OSFP module lengths with pull tab	108
Figure B-2: Type 2 or Type 3 OSFP with pull tab	108
Figure B-3: OSFP-RHS module lengths with pull tab	108
Figure C-1: OSFP module with bottom heatsink	109
Figure C-2: OSFP with bottom heatsink, shape of the back	109
Figure C-3: Bottom heatsink fin pitch	109

Tables

Table 3-1: Descriptions of the module mechanical datum	12
Table 3-2: Surface flatness and roughness for the thermally conductive area	18
Table 3-3: OSFP color code	25
Table 4-1: Descriptions of the cage and connector mechanical datum	26
Table 5-1: Descriptions of the Stacked SMT cage and connector mechanical datum	41
Table 6-1: Descriptions of the module mechanical datum	52
Table 7-1: Insertion, extraction, and retention forces for an OSFP module	61
Table 7-2: Durability	62
Table 8-1: Temperature range classes	
Table 8-2: OSFP Connector Thermal Requirements	62
Table 9-1: Comparison of OSFP-RHS to OSFP	66
Table 9-2: Surface flatness and roughness of the thermally conductive area	71
Table 11-1: OSFP module signal pin descriptions	94
Table 11-2: OSFP connector pin list	94
Table 11-3: High-speed signal lane mapping	96
Table 11-4: INT/RSTn circuit parameters	98
Table 11-5: LPWn/PRSn circuit parameters	.100
Table 11-6: Power up behavior	101
Table 11-7: OSFP power specification	102
Table 11-8: OSFP power classes	103
Table 11-9: OSFP power summary per MSA revision	.104
Table A-1: Suggested OSFP LED signaling scheme for multiple channel modules	.107

1 Scope

The OSFP specification defines:

- The OSFP module mechanical form factor, including latching mechanism;
- Host cage together with the mating connector;
- Electrical interface, including pin-out, data, control, power and ground signals;
- Mechanical interface, including package outline, front panel and printed circuit board (PCB) layout requirements;
- Thermal requirements and limitations, including heat sink design and airflow;
- Electrostatic discharge (ESD) requirements, and;
- The module management interface (contained in the OSFP Management Specification).

2 References

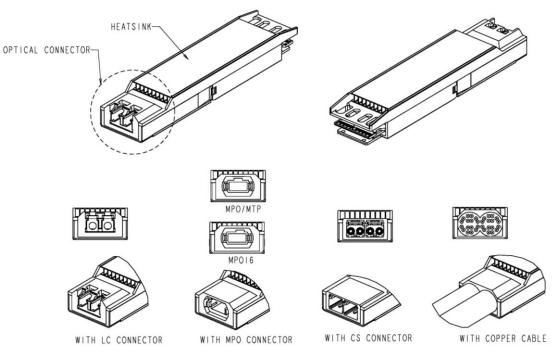
- IEC 61754-7-1:2014: Fibre optic interconnecting devices and passive components -Fibre optic connector interfaces - Part 701: Type MPO connector family – One fibre row
- IEC 61754-20:2012: Fibre optic interconnecting devices and passive components Fibre optic connector interfaces Part 20: Type LC connector family.
- TIA-604-18, FOCIS 18 Fiber Optic Connector Intermateability Standard Type MPO-16
- CS[®] Connector Specification, Rev 1.0, September 18th, 2017, http://www.qsfpdd.com/cs-optical-connector/
- SFF-8636: Specification for Management Interface for Cabled Environments, Rev. 2.7 January 26, 2016
- UM10204, I²C-bus specification and user manual, Rev 6 4 April 2014
- MIPI I3CSM HCISM v1.0, MIPI Alliance, September 29, 2017
- SFF-8679: Specification for QSFP+ 4X Base Electrical Specification, Rev 1.8 October 4, 2018
- SFF-8024: Specification for SFF Cross Reference to Industry Products, Rev 4.1 June 27, 2016
- EN61000-4-2:2008: Electromagnetic compatibility (EMC)- Part 4-2: Testing and measurement techniques Electrostatic discharge immunity test
- ANSI/ESDA/JEDEC JS-001-2014: Electrostatic Discharge Sensitivity Testing Human Body Model (HBM) Component Level
- IEEE802.3bs: Media Access Control Parameters, Physical Layers and Management Parameters for 200 Gb/s and 400 Gb/s Operation
- IEEE802.3cd: Media Access Control Parameters for 50 Gb/s and Physical Layers and Management Parameters for 50 Gb/s, 100 Gb/s, and 200 Gb/s Operation
- IEEE802.3bj: Amendment 2: Physical Layer Specifications and Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables
- IEEE802.3bm: Amendment 3: Physical Layer Specifications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic Cables
- EIA-364-70: Temperature Rise Verus Current Test Procedure for Electrical Connectors and Sockets
- GR-63-CORE, NEBS[™] Requirements: Physical Protection, Issue 4, April 2012
- UL 62368-1, Standard for Audio/video, information and communication technology equipment Part 1: Safety requirements, Edition 3, 2019

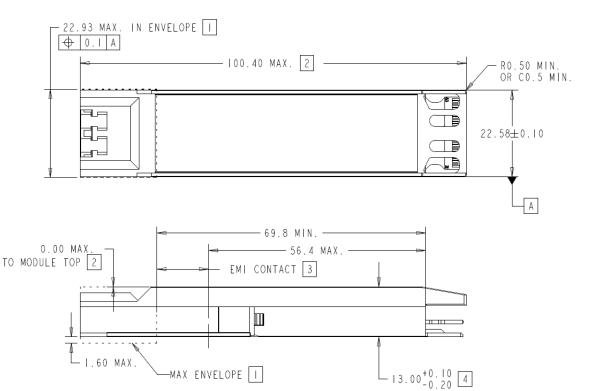
- QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Revision 3.0, September 19, 2017
- 400G BiDi MSA, https://www.400gbidi-msa.org/
- Interface Specification for MDC Receptacle, Rev 4, February 6 2020, USC11383001, US Conec
- Specification for SN[®] Transceiver Receptacle, SN[®] Connector Specification SN60092019 Rev 1.0, Senko
- Common Management Interface Specification for 8/16X Pluggable Transceivers, Rev 4.0, QSFP-DD MSA, <u>http://www.qsfp-dd.com/</u>
- OIF-CEI-04.0, Common Electrical I/O (CEI) Electrical and Jitter Interoperability agreements for 6G+ bps, 11G+ bps, 25G+ bps I/O and 56G+ bps, 2017, Optical Internetworking Forum
- Press Release, AirMT™ series Non-contact MT Technology, <u>https://global-sei.com/company/press/2019/09/prs072.html</u>
- 3M[™] Expanded Beam Optical Connector (EBO), <u>https://www.3m.com/3M/</u> <u>en_US/data-center-us/applications/interconnect-optical/</u>
- USConec MXC[®] Expanded Beam Connector, <u>https://www.usconec.com/</u> <u>connectors/mxc-expanded-beam</u>

3 OSFP Module Mechanical Specification

3.1 Overview

A typical OSFP module is shown in Figure 3-1. An assortment of connector types are shown. Connector and cable variations not shown here are allowed, including as depicted in Section 10.3.



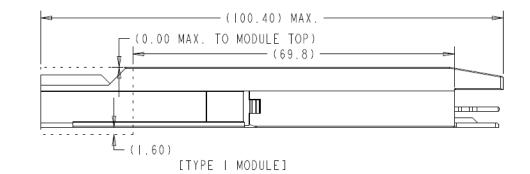

Figure 3-1: OSFP module with different connectors (Duplex LC, MPO, CS[®], Copper)

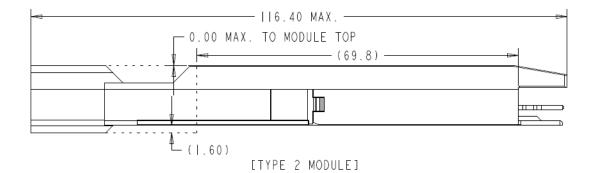
In the module mechanical drawings included throughout this specification, the datum as defined in Table 3-1 shall apply.

Designator	Description	Figure
А	Width of Module	Figure 3-2
В	Forward stop of Module	Figure 3-2; also see Figure
		3-8
С	Bottom surface of Module	Figure 3-2
D	Width of Module pc board	Figure 3-19
E	Signal pad leading edge of Module pc board	Figure 3-19
F	Top surface of Module pc board	Figure 3-19

Table 3-1: Descriptions of the module mechanical datum

Figure 3-2 shows the dimensions of the Standard OSFP module. Note that the module is shown with a typical latch release mechanism without a pull tab. Alternate latch release mechanisms are allowed. All dimensions in this specification are in millimeters (mm) unless otherwise noted.


NOTES:


FRONT OF THE MODULE, PULL TAB AND OTHER COMPONENTS CAN EXTEND I.6MM MAX FROM THE BOTTOM OF THE MODULE AND CAN HAVE UP TO 22.93mm WIDTH IN THE MAX ENVELOPE SHOWN.

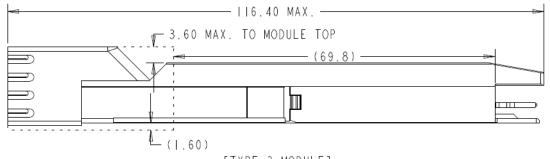
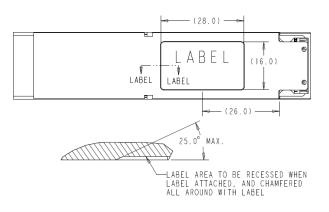

- 2 APPLIES TO THE TYPE I MODULE ONLY.
- 3 INDICATED SURFACES (ALL 4 SIDES) TO BE CONDUCTIVE FOR CONNECTION TO CHASSIS GROUND.
- 4 APPLIES FROM THE TOP OF THE MODULE TO THE BOTTOM OF THE MODULE, INSIDE THE CAGE. Figure 3-2: OSFP overall dimensions

Figure 3-3 shows the total length and front height of Type 1, Type 2 and Type 3 OSFP modules. A Type 2 OSFP module provides maximum of 16mm additional length in front than a Type 1 module, and a Type 3 OSFP module provides maximum of 3.6mm additional height in the front than a Type 2 module. Type 2 and Type 3 module can provide additional space for various optical interface, as described in the section 10.3.

Type 3 OSFP module is not compatible with stacked cage in the section 5 and 6.



[TYPE 3 MODULE]

Figure 3-3: Size of module front, for Type 1, Type 2 and Type 3 OSFP

SECTION LABEL-LABEL (MAGNIFIED VIEW). Figure 3-4: OSFP label reference location

OSFP MSA Confidential

Figure 3-4 shows the recommended label location. Figure 3-5 shows the corner radius of the module.

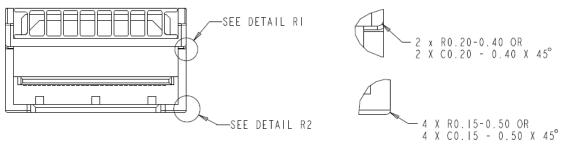


Figure 3-5: OSFP corner radius

3.2 OSFP Nose

To mate with an electrical connector located in the cage, an OSFP module shall have a protruded printed circuit board (PCB) with contact pads. A structure consisting of upper and lower lips forms a nose (i.e. back of the module) that serves as a guard to protect the PCB. Figure 3-6 through Figure 3-12 show the dimensional requirements of the nose, including the shape of the lip, connector mating area, forward stop, ventilation holes and location of the signal pads.

Figure 3-8 shows the location of the forward stop, consisting of the left and right vertical side walls of the bottom case of the module, which interact with features in the connector cage to stop the module when it is fully inserted. The vertical side walls shall extend at least 7.0 mm upward as measured from the bottom of the module for the forward stop feature.

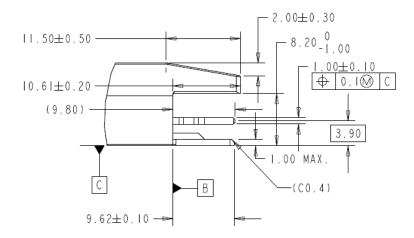


Figure 3-6: OSFP nose, side view

Figure 3-7: OSFP nose, side view, no component area

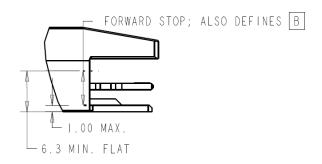


Figure 3-8: OSFP nose, side view, location of the forward stop

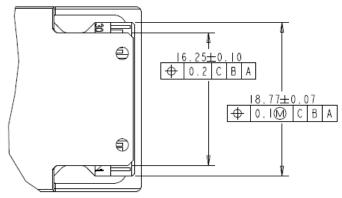


Figure 3-9: OSFP nose, bottom view

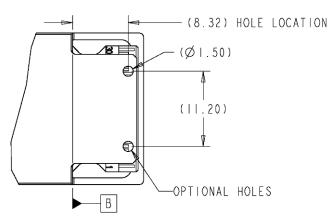


Figure 3-10: OSFP nose, bottom view, optional signal pad inspection holes

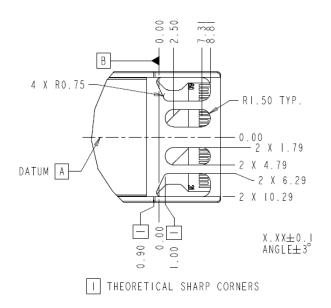


Figure 3-11: OSFP nose, top view: dimension for ventilation holes

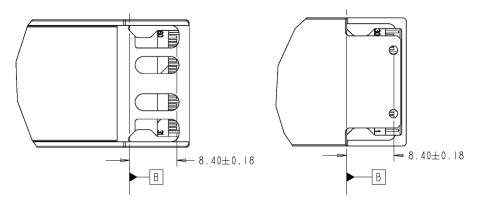
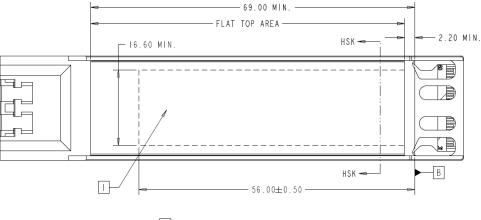



Figure 3-12: Signal pad location to module (left: top view, right: bottom view)

3.3 Heat Sink, Closed Top

In order to dissipate heat, the module allows for airflow along its length. Figure 3-13 shows requirements for the heat sink location in order to avoid collision with the keying feature in the cage and also ensure proper contact with ground and an optional thermal interface. Refer to Figure 4-11 for details of the key feature located in the cage.

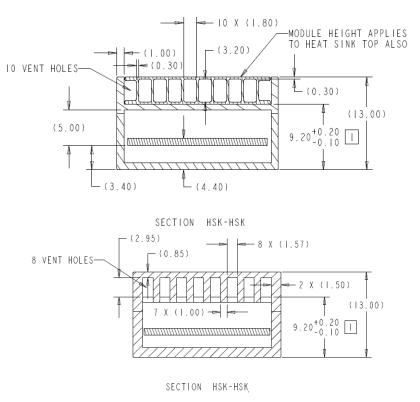

I SURFACE TO BE THERMALLY CONDUCTIVE

Figure 3-13: Heat sink, top view

The thermally conductive area in Figure 3-13 should have surface flatness and roughness as in Table 3-2. The area may contact with the riding heatsink, which depicted in the section 4.5.

Table 3-2: Surface flatness and roughness for the thermally conductive	area
--	------

Module Power (Max.)	Surface Flatness	Surface Roughness
N/A	0.12mm or better	Ra 1.6µm or better
Recommended for module with more than 20W (Optional)	0.075mm or better	Ra 0.8µm or better

I FOR THE MODULES WHICH DOES NOT NEED COMPATIBILITY WITH STANDARD OPTICAL COMPONENTS, 9.20+0.30/-1.20mm IS PERMITTED.

Figure 3-14: Examples of heat sink design (See Figure 3-13 for cross-section location)

Figure 3-14 presents two examples of heat sink design. Either may be considered for use. Alternate designs different from examples presented may also be used, but any heat sink design shall allow for an amount of airflow as defined in Section 8.2.

As shown in the Figure 3-15, top trailing edge of the closed top heatsink to have a minimum edge break to avoid riding heatsink damage.

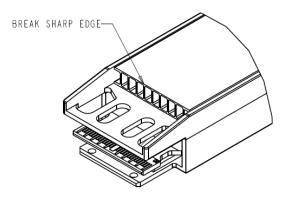


Figure 3-15: Flat top heatsink details, rear of plug

Heat Sink, Open Top 3.4

Modules which have a non-closed top, i.e. open top, are allowed only when the heat sink fins are designed to meet the dimensional requirements outlined in Figure 3-16 through Figure 3-18 in order to prevent EMI finger damage and to ensure proper EMI shielding. Height and length of the heat sink may differ from reference height presented, but still shall allow an amount of airflow as defined in Section 8.2.

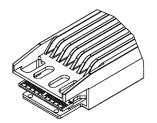
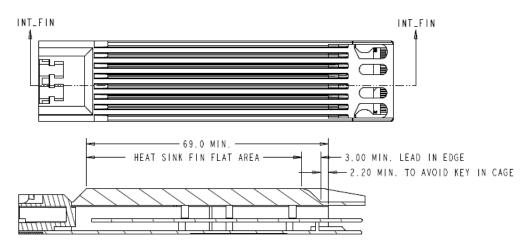



Figure 3-16: Open top heat sink (Isometric view)

SECTION INT_FIN-INT_FIN

Figure 3-17: Heat sink location

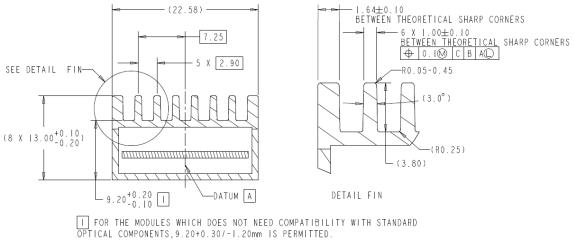
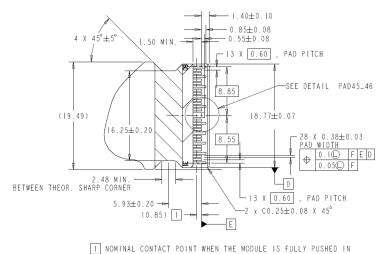
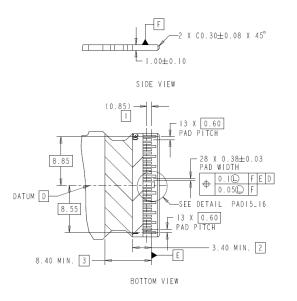


Figure 3-18: Heat sink fin pitch


The top and bottom internal EMI fingers are specified per this fin pitch, as depicted in Figure 4-8. It is possible to add airflow passages to the bottom of the module with this fin pitch for thermal management of high power modules.

3.5 Card-edge Design (Module Electrical Interface)


The OSFP module contains a PCB with contact pads (i.e. module PC board; paddle card) that mate with a connector as specified in Section 4.10 of this document. Critical dimensions for the contact pads are shown in Figure 3-19 through Figure 3-21. The contact pads on the PCB are designed for sequence mating during module insertion as follows:

- First mate: ground contacts
- Second mate: power contacts
- Third mate: signal contacts

During module removal, contact disconnects happen in reverse order of the above, e.g. signal contacts break first.

TOP VIEW

2 COMPONENT KEEP OUT AREA (MATED WITH CONNECTOR), FOR BOTH SIDES
 3 AVOID COMPONENT PLACEMENT (PCB EXPOSED IN SIDE VIEW), FOR BOTH SIDES

Figure 3-19: OSFP module pc board (card-edge)

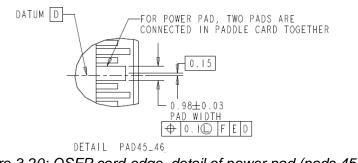
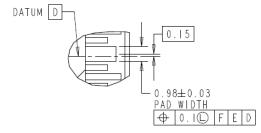
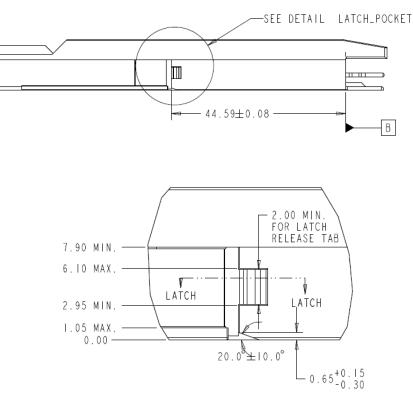



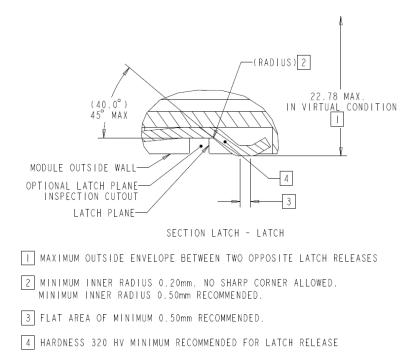
Figure 3-20: OSFP card-edge, detail of power pad (pads 45/46)

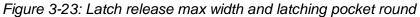
DETAIL PADI5_16

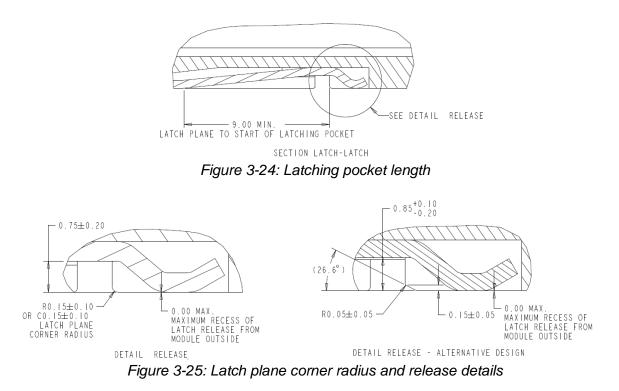

Figure 3-21: OSFP card-edge, detail of power pad (pads 15/16)

3.6 Contact Pad Plating Requirements

The contact pad plating shall meet the durability requirements of Section 7.1 and Section 7.2. The recommended plating specification is $0.762 \ \mu m$ minimum gold over 3.81 μm minimum nickel. Other plating systems are allowed provided they meet or exceed the requirements of Section 7.1 and 7.2.


3.7 Module Latch Feature


For latching, the module shall have latching pockets and a latch release mechanism at both sides as shown in Figure 3-22 to Figure 3-25. Dimensional details of the cage flap can be found in Figure 4-19 and Figure 4-20.



DETAIL LATCH_POCKET

Figure 3-22: Latch pocket location

In Figure 3-25, two reference designs are given. Different latch release design are allowed, as long as reliable latch release can be achieved.

3.8 Module Color Code

The module shall adhere to a color code by application of color to its pull-tab or other appropriate method. The color code to be applied is given in Table 3-3.

Product Type	Example PMD	Color	Pantone Code (Recommended)
OSFP copper cables	400G-CR8	Black	N/A
OSFP AOC Cables	400G-AOC	Grey	422U
OSFP 850nm solutions	400G-SR8, SR4.2	Beige	475U
OSFP 1310nm solutions for up to 500m	400G DR4	Yellow	107U
OSFP 1310nm solutions for up to 2km	400G FR4, FR8	Green	354C
OSFP 1310nm solutions for up to 10km	400G LR8	Blue	300U
OSFP 1310nm solutions for up to 40km	400G ER8	Red	1797U
OSFP 1550nm solutions for up to 80km	400G ZR8	White	N/A

Table 3-3: OSFP color code

3.9 Touch Temperature

Module surfaces outside of the cage must comply with applicable touch temperature requirements. If the temperature of the module case will exceed applicable short-term touch limits, then a means to prevent contact with the case during the handling of the module shall be provided. Refer to UL 62368-1 and NEBS GR-63.

4 Single Row Surface Mount Technology OSFP Connector and Its Cage: Mechanical Specification

In this section, the configuration of a single row SMT (Surface Mount Technology) connector and its cage are presented.

4.1 Overview

Figure 4-1 gives an overview of a 1x1 and 1x4 cage without modules installed. Figure 4-2 depicts a 1x1 cage with an OSFP module in the fully inserted position.

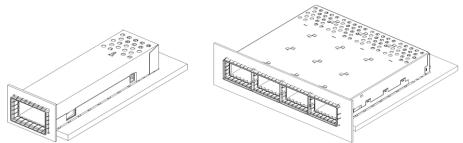


Figure 4-1: 1x1 and 1x4 cage, host PCB and panel

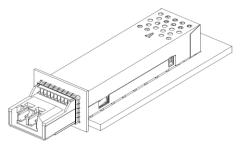


Figure 4-2: OSFP module in a 1x1 cage

In the cage and connector mechanical drawings included throughout this specification, the datum as defined in Table 4-1 shall apply. For datum of the module, see Table 3-1.

Designator	Description	Figure
G	Forward stop of Cage	Figure 4-3
н	Seating plane of Cage on host pc board	Figure 4-3
J	Width of inside of Cage	Figure 4-4
К	Connector guide post #1	Figure 4-6; Figure 4-23
L	Cage Pin #1	Figure 4-3
М	Top surface of host pc board	Figure 4-14
Ν	Host pc board through hole #1 to accept Connector guide post	Figure 4-14
Р	Host pc board through hole #2 to accept Connector guide post	Figure 4-15
R	Host pc board through hole #1 to accept Cage Pin	Figure 4-15
S	Width of Connector	Figure 4-23
Т	Front surface of Connector	Figure 4-23
U	Seating plane of Connector	Figure 4-23

Table 4-1: Descriptions of the cage and connector mechanical datum

4.2 Cage Dimensions and Positioning Pin

Figure 4-3 through Figure 4-5 shows cage datum, positioning pin, port size and cage height. In addition, Figure 4-6 shows nominal dimensions between the module and the cage when the module is fully inserted. Note that the compliant pins in the cage are placed to support belly-to-belly applications. For ganged cages, some compliant pins shall be shorter to support the belly-to-belly application properly. Figure 4-7 shows the length of the compliant pins for a 1x4 cage. Figure 4-17 shows the host PCB board layout for a 1x4 cage.

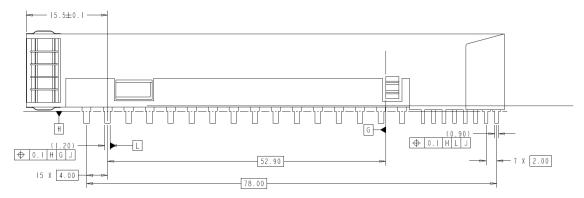


Figure 4-3: Cage positioning pins and forward stop

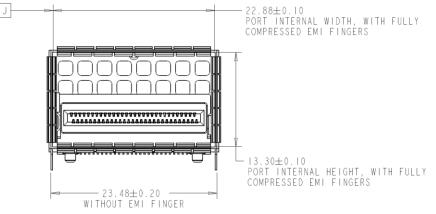


Figure 4-4: Port internal width and height

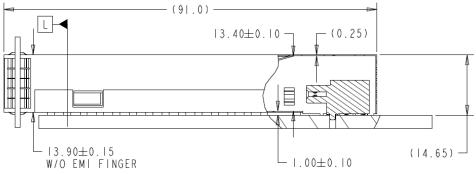
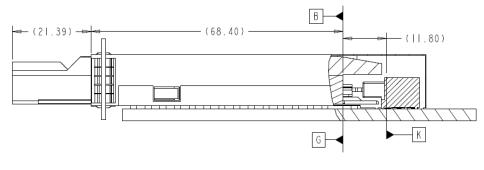
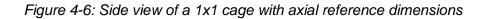




Figure 4-5: Side view of a 1x1 cage with vertical cage dimensions

DATUM B: MODULE FORWARD STOP DATUM G: CAGE FORWARD STOP DATUM K: CONNECTOR GUIDE POST

THIS FIGURE SHOWS THE DATUM ALIGNMENT BETWEEN CONNECTOR, CAGE AND MODULE AND ALSO SHOWS THE REFERENCE DIMENSION OF THE MODULE INSIDE CAGE, WHEN THE MODULE IS FULLY PUSHED IN.

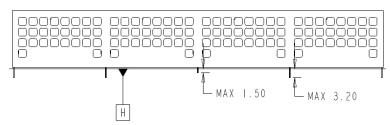


Figure 4-7: Length of the compliant pins into the board, for belly-to-belly application

4.3 EMI Finger Pitches

Figure 4-8 gives EMI finger dimensions to be used for the internal side of top and bottom EMI fingers. These pitches are designed such that the OSFP module as described in Section 3.4 is compatible. Fingers for the left, right, and outside of the cage shall be designed to ensure appropriate EMI shielding, but finger pitch is not specified. This EMI finger pitch specification shall be applied to the stacked SMT cage (Section 5) and stacked press-fit cage (Section 6).

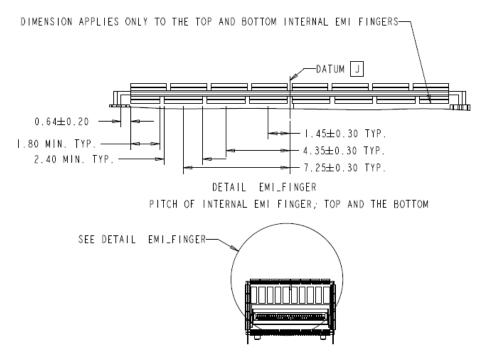


Figure 4-8: Internal EMI finger, top and bottom

4.4 Ventilation Hole, Key and Stop

Figure 4-9 shows the key and forward stop features. The keying feature will prevent the module from being inserted upside down.

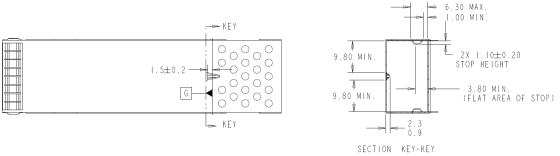


Figure 4-9: Key and stop

The cage should have ventilation holes to allow airflow. Refer to Figure 4-10 and Figure 4-11 for examples of ventilation hole details.

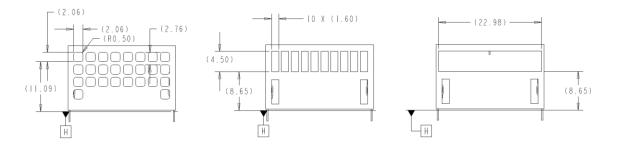


Figure 4-10: Rear ventilation holes, three example designs

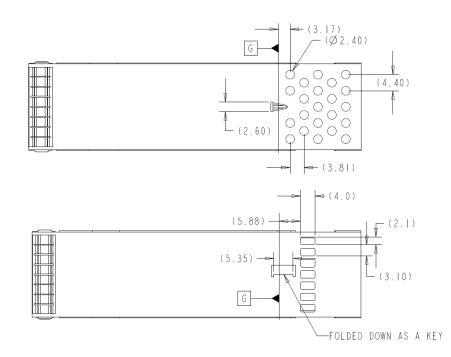


Figure 4-11: Top ventilation holes, two example designs

4.5 Riding Heatsink

An OSFP cage may have a riding heatsink. Figure 4-12 shows the cutout size of the cage for the riding heatsink. Figure 4-13 shows the reference design of the leading edge of a riding heatsink. The force which will be applied from the riding heat sink to an OSFP module shall not exceed 36N downward.

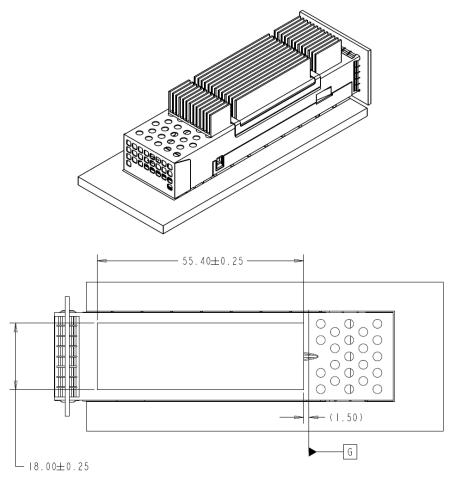


Figure 4-12: OSFP with a riding heatsink (above) and cutout on the cage for a riding heatsink in OSFP (bottom)

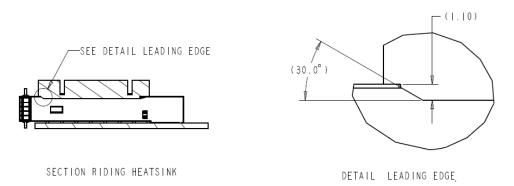


Figure 4-13: Heat sink leading edge, reference design

4.6 Host PCB Layout – 1x1 Cage

The host PCB layout pattern to accept a 1x1 cage is detailed in Figure 4-14 through Figure 4-16.

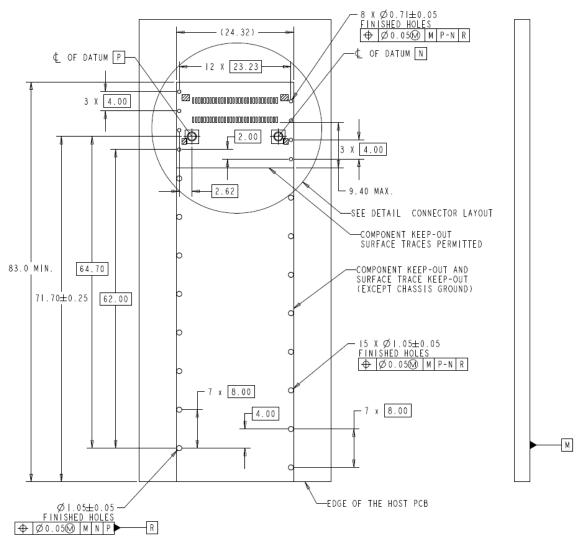


Figure 4-14: Host PCB layout for 1x1 cage

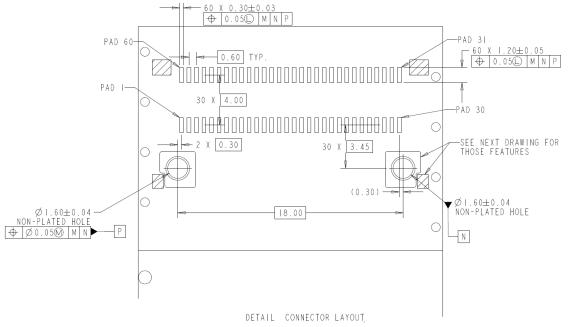


Figure 4-15: Host PCB layout, details

Figure 4-16 shows keep out areas and optional solder rings. The solder rings are for SMT belly-to-belly applications, thus applying solder to the area is optional. The keep out areas are there in order to prevent interference with the connector in Figure 4-23. The keep out areas should be kept in the layout in all cases regardless of whether solder is applied to the optional solder ring area.

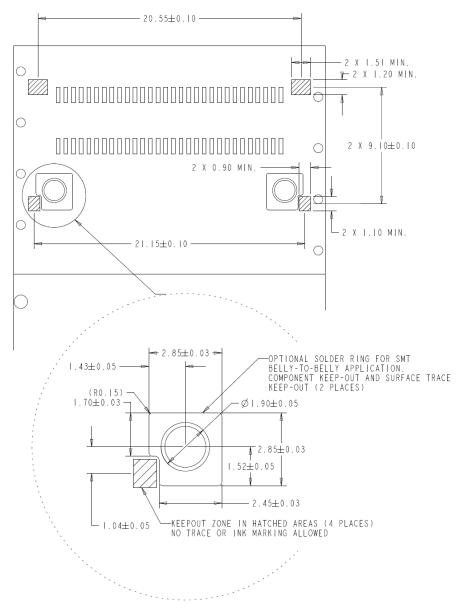


Figure 4-16: Solder ring for belly-to-belly application

4.7 Host PCB Layout – 1x4 Cage

For a 1x4 cage, the host PCB layout shall have a 23.23mm horizontal pitch from cage-tocage as in Figure 4-17.

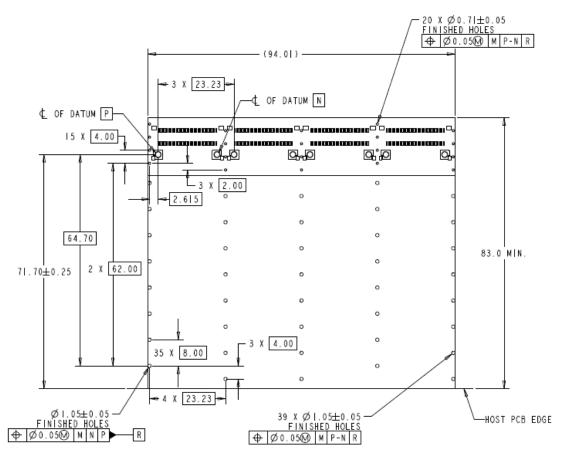


Figure 4-17: Host PCB layout for 1x4 cage

Figure 4-18 compares the host PCB layout between the 1x1, 1x2 and 1x4. The details of the 1x2 PCB layout are not given in this document.

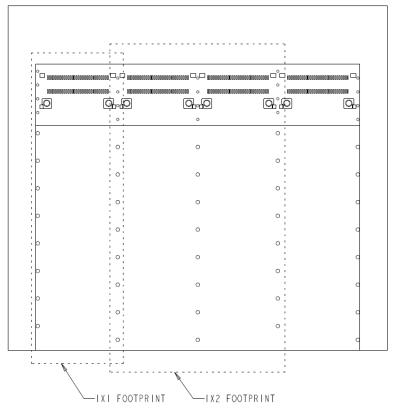


Figure 4-18: Comparison of host PCB layout between 1x1, 1x2 and 1x4

4.8 Latch Flaps in Cage

In the cage, flaps as shown in Figure 4-19 and Figure 4-20 shall be on both sides of the cage to latch the module into the cage. Flaps are shown in a 1x1 cage but can be applied

to a ganged cage such as a 1x4 cage or any 1xN cage. The dimension 44.80 ± 0.08 mm, cage latch to module stop, applies when the module is in mated condition.

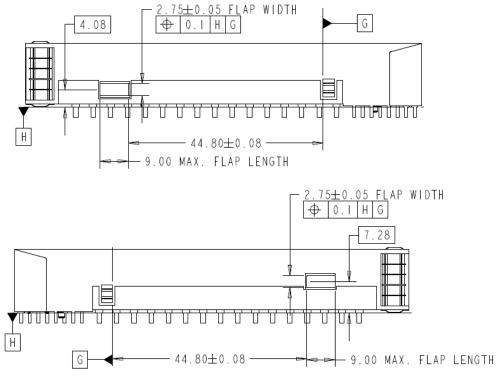


Figure 4-19: Latch feature, left and right side

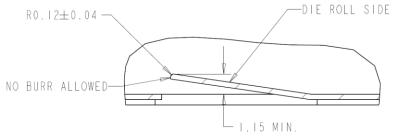


Figure 4-20: Latch flap, cross-sectional view from top

4.9 Bezel Panel Cut-Out

The EMI spring fingers of the cage shall make contact to the inside of the bezel panel cut out in order to make ground contact. Figure 4-21 and Figure 4-22 show recommended dimensions of the bezel panel cut-out. As the horizontal pitch of the cage is 23.23mm, the bezel cut out width of 1x2 shall be 47.51mm while the detailed design is not depicted here.

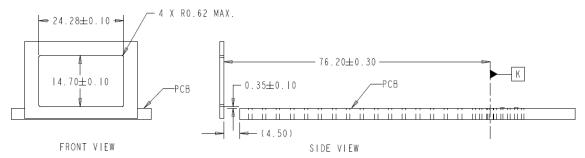


Figure 4-21: Bezel design and location for 1x1 cage

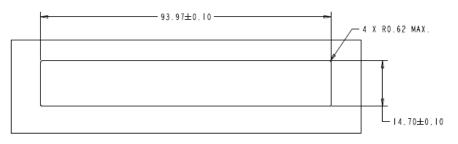
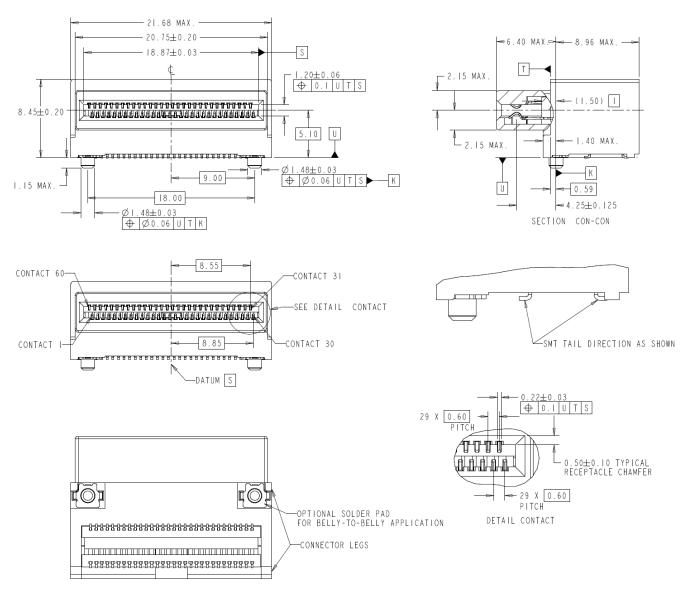



Figure 4-22: Bezel design for 1x4 cage

4.10 Single Row SMT Connector

The electrical connector shall have the following dimensions to properly receive the module as well as allowing for air to pass over the module to the outside. The tail direction of the connector is specified as shown.

I MODULE PC BOARD NOT TO BOTTOM AGAINST RECEPTACLE

Figure 4-23: Surface mount connector

4.11 Blank Plug

Any unused or empty port of a cage shall have a blank plug. The blank plug shall serve to minimize EMI while at the same time allowing for a maximum airflow no more than that of a module. See Figure 4-24 for a recommended design. Blank plug shall be used on the stacked SMT (Section 5) and Stacked press-fit cage (Section 6).

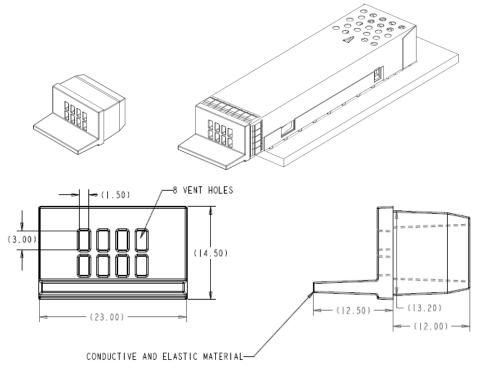


Figure 4-24: OSFP blank plug (reference design)

5 Stacked Surface Mount Technology Connector and Its Cage

In this section, the configuration of stacked SMT connector and cage are presented. Note that the stacked SMT connector and cage is compatible only with Type 1 and Type 2 OSFP modules, not with Type 3 OSFP module as in the Figure 3-3.

5.1 Overview

Figure 5-1 gives an overview of a 2x1 SMT connector, cage, host PCB and the panel.

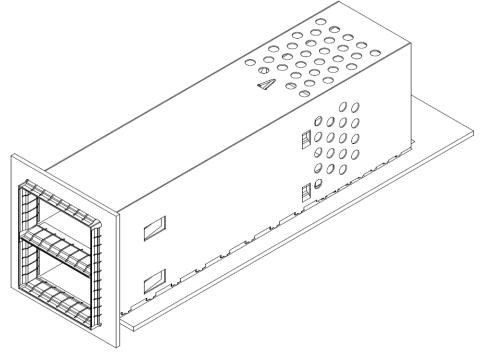
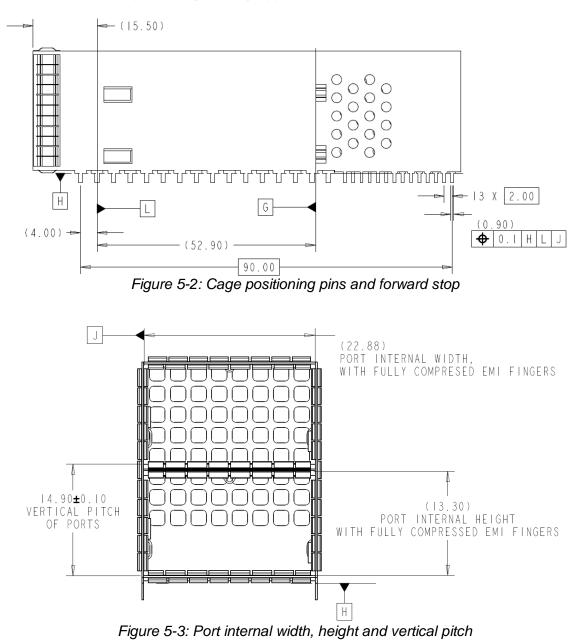
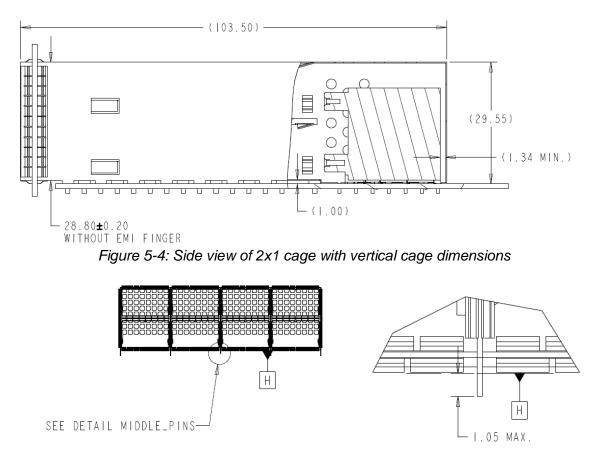


Figure 5-1: Stacked SMT 2x1 cage with host PCB and the panel

In the mechanical drawings of this section, the datum as defined in Table 5-1 shall apply. Note that the same designators are used for the corresponding features of the single row SMT connector and its cage, as in Table 4-1.


Designator	Description	Figure
G	Forward stop of Cage	Figure 5-2
н	Seating plane of Cage on host pc board	Figure 5-2
J	Width of inside of Cage	Figure 5-3
К	Connector guide post #1	Figure 5-18
L	Cage Pin #1	Figure 5-2
М	Top surface of host pc board	Figure 5-9
N	Host pc board through hole #1 to accept Connector guide post	Figure 5-9
Р	Host pc board through hole #2 to accept Connector guide post	Figure 5-9
R	Host pc board through hole #1 to accept Cage Pin	Figure 5-9
U	Seating plane of Connector	Figure 5-18


Table 5-1: Descriptions of the Stacked SMT cage and connector mechanical datum

Latch, stop and keying features of the cage are not specified in the mechanical drawings in this section. For those features, the same specification as the single row SMT connector and its cage in section 4 shall apply.

5.2 Cage Dimensions and Positioning Pin

Figure 5-2 through Figure 5-4 show cage datum, positioning pin, port size, and cage height. Figure 5-5 shows that the middle row compliance pins in the 1x4 cage should be shorter than the others to support belly-to-belly applications.

DETAIL MIDDLE_PINS

Figure 5-5: Length of the compliance pins at the middle, for belly-to-belly applications

5.3 Ventilation Holes

Cage should have ventilation holes to allow sufficient airflow. Figure 5-6, Figure 5-7 and Figure 5-8 show an example design.

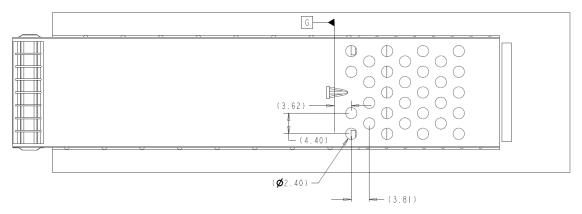


Figure 5-6: Top ventilation, example design

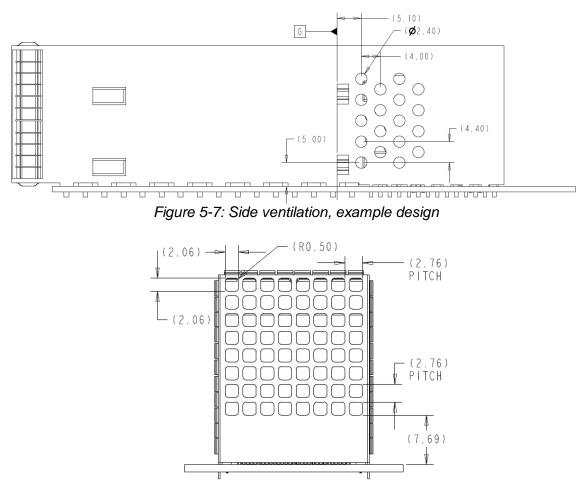


Figure 5-8: Rear ventilation, example design

5.4 Host PCB Layout – 2x1 Cage

The host PCB layout pattern for 2x1 SMT connector and cage are presented in this section. Note that pads 1 to 60 correspond to pins 1 to 60 of the OSFP in the lower port as in Figure 11-1, while pads 61 to 120 correspond to pins 1 to 60 of the OSFP in the upper port.

Page 45

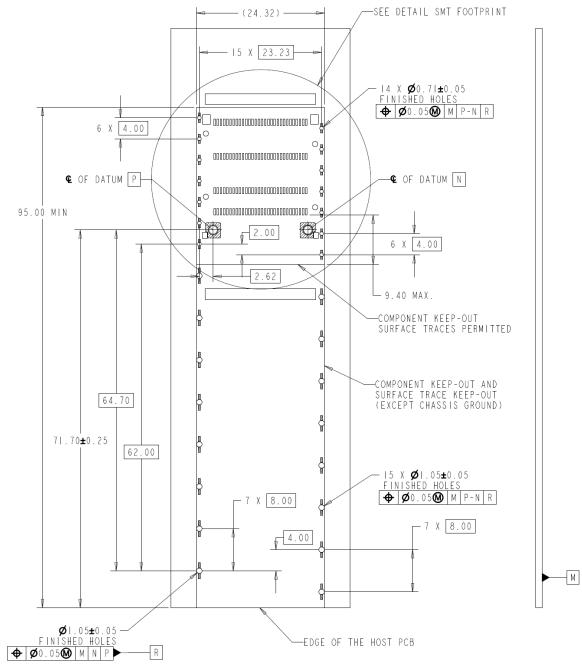


Figure 5-9: Host PCB Layout for 2x1 SMT cage

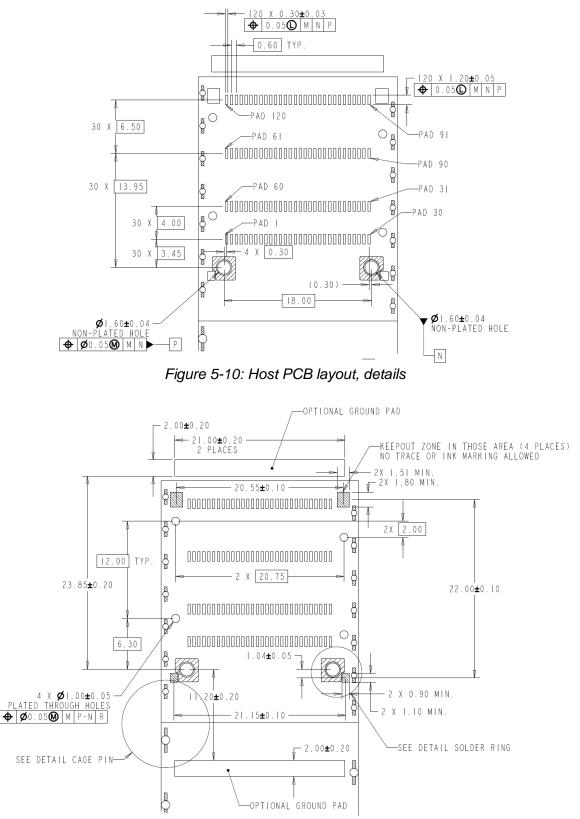


Figure 5-11: Layout for peg, retaining feature and ground pad

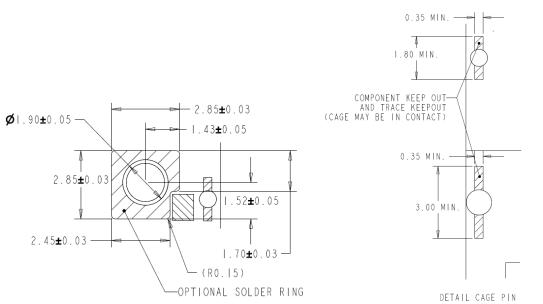


Figure 5-12: Details of optional solder ring (left) and cage pin keepout (right)

5.5 Host PCB Layout – 2x4 Cage

In this section, host PCB layout for the ganged cage is presented in a 2x4 cage host layout. Figure 5-14 shows the comparison of 2x1, 2x2 and 2x4, while the detailed layout specification of the 2x2 is not provided here.

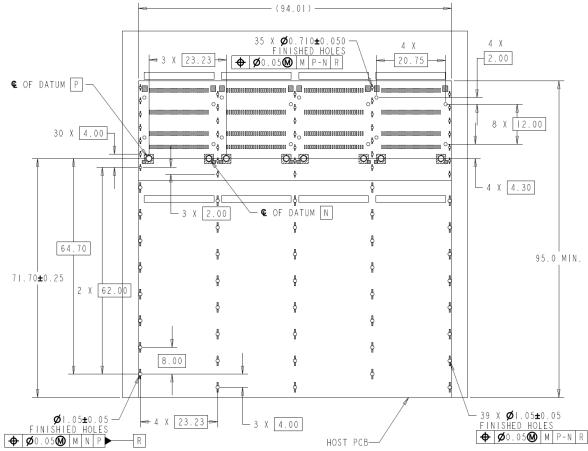


Figure 5-13: Host PCB layout for 2x4 cage

OSFP MSA Confidential

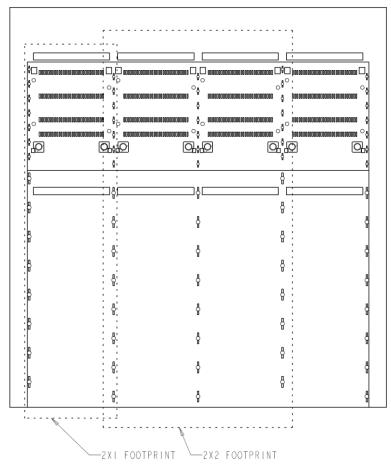


Figure 5-14: Comparison of SMT stacked 2x1, 2x2 and 2x4

5.6 PCB Thickness and Footprint for Belly-to-Belly Application

In this section, the minimum PCB thickness for the belly-to-belly application is shown, along with its host PCB layout. The cage and connector should be able to support a minimum PCB thickness as specified in Figure 5-15.

Figure 5-15: PCB thickness for belly-to-belly applications

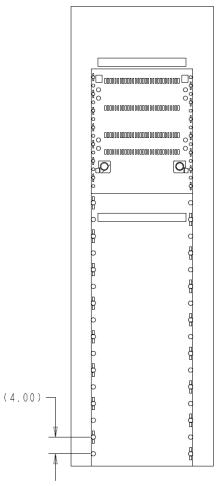


Figure 5-16: The host PCB layout for the 2x1 belly-to-belly applications

5.7 Stacked SMT Connector

Figure 5-17 to Figure 5-19 show the maximum mechanical envelope of the stacked SMT connector. Actual connector shape shall be smaller than this envelope. Figure 5-20 shows an example design, where the connector is optimized to provide better airflow to bottom row. For the contact and peg dimensions, specifications as defined in the section 4.9 for the single row SMT connector shall be applied.

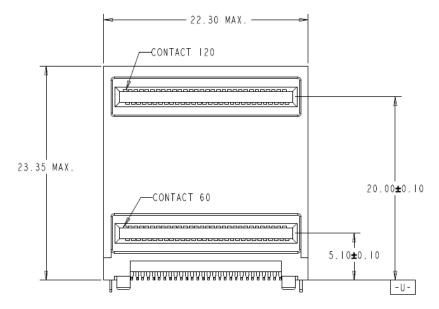


Figure 5-17: Stacked SMT connector, front view

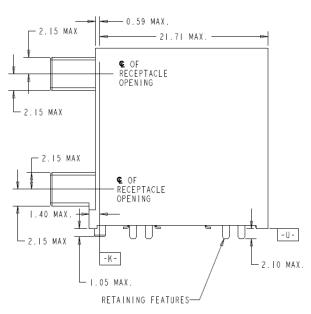


Figure 5-18: Stacked SMT connector, side view

For the retaining feature in Figure 5-18, the feature should be designed to allow proper retaining of the connector during and after soldering. The SMT tail direction shall be as defined in Figure 5-19.

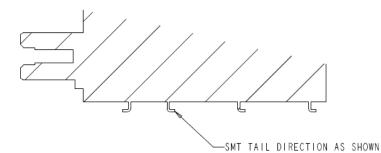


Figure 5-19: SMT tail direction

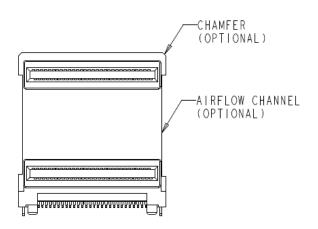


Figure 5-20: Example of actual connector design

5.8 Bezel Panel Cut-Out

In this section, the recommended shape for the bezel to make contact with the EMI finger of the cage is presented.

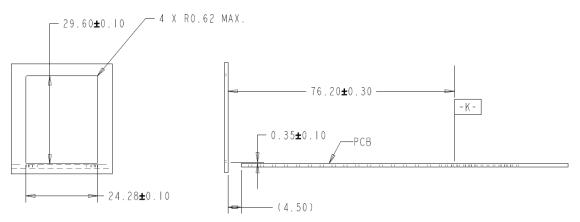


Figure 5-21: Bezel design and location for SMT 2x1 Cage

6 Press-fit Stacked OSFP Connector and cage Mechanical Specification

In this section, the press-fit stacked connector and cage for OSFP is described. Note that the stacked SMT connector and cage is compatible only with Type 1 or Type 2 OSFP modules, not with Type 3 OSFP module as in the Figure 3-3.

6.1 Overview

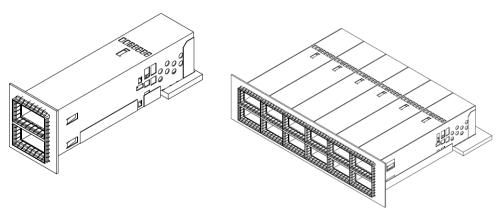


Figure 6-1: Overview of stacked cage, 2x1 and 2x6

In Figure 6-1, stacked cages of 2x1 and 2x6 are shown to demonstrate the stacked ganged cage. Both of the cages are shown with host PCB board and front panel. For stacked cage, additional datum as defined in Table 6-1 shall apply.

Designator	Description	Figure
V	Centerline of the Connector Peg	Figure 6-15
Y	Rear Surface of the Connector	Figure 6-15

6.2 Cage Dimensions and Positioning Pin

Figure 6-2 shows the location of the cage positioning pins and the forward stop. Note that the host PCB have significant distance from the front of the cage. In Figure 6-3, the vertical pitch of the stacked cage is defined. To ensure sufficient strength of the cage compliant pins, two material thickness of 0.40mm and 0.25mm are used in the reference design of the cage. 0.40mm thickness is used where the cage compliant pins are used.

Figure 6-4 shows reference dimensions of the cage when assembled with host PCB and OSFP module.

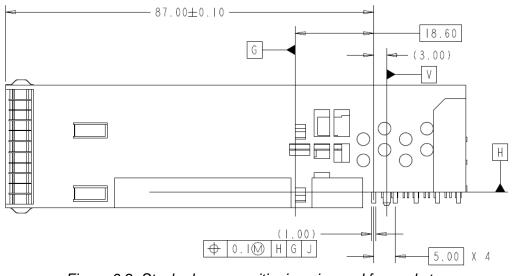


Figure 6-2: Stacked cage positioning pins and forward stop

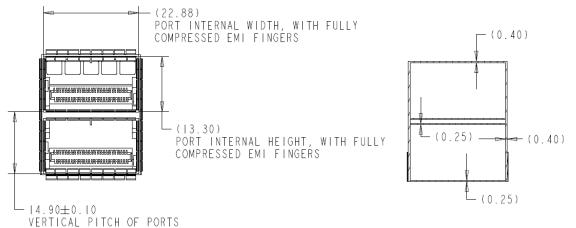


Figure 6-3: Stacked cage, port internal size, pitch and wall thickness

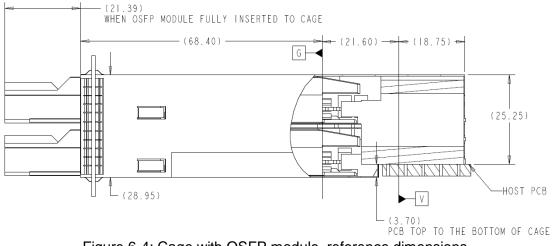


Figure 6-4: Cage with OSFP module, reference dimensions

6.3 Ventilation Holes

For proper cooling of the OSFP module in the stacked cage, the cage shall have appropriate ventilation holes. From Figure 6-5 to Figure 6-8, the ventilation holes required in the stacked

ganged cage are described. The vent holes are designed not only to help with airflow from front to back of the cage, but also to help with airflow between the top and bottom rows of the cage, airflow between neighboring ports and to the bottom of the cage.

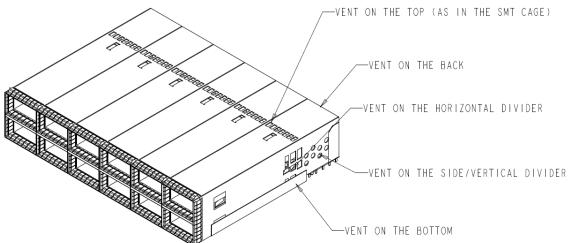


Figure 6-5: Overview of ventilation holes in the stacked cage

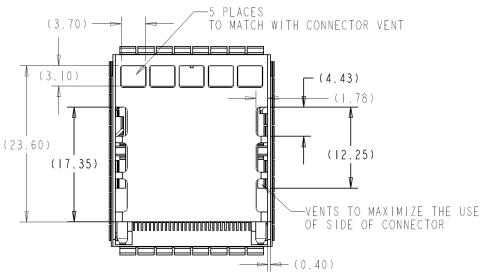


Figure 6-6: Ventilation holes at the back of the cage

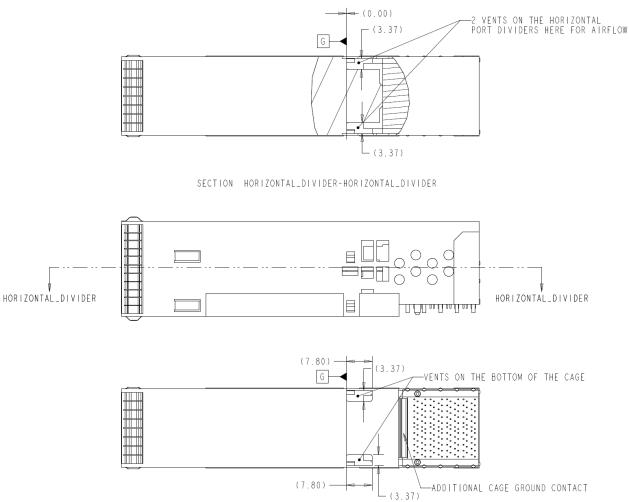


Figure 6-7: Ventilation holes in the horizontal divider and bottom

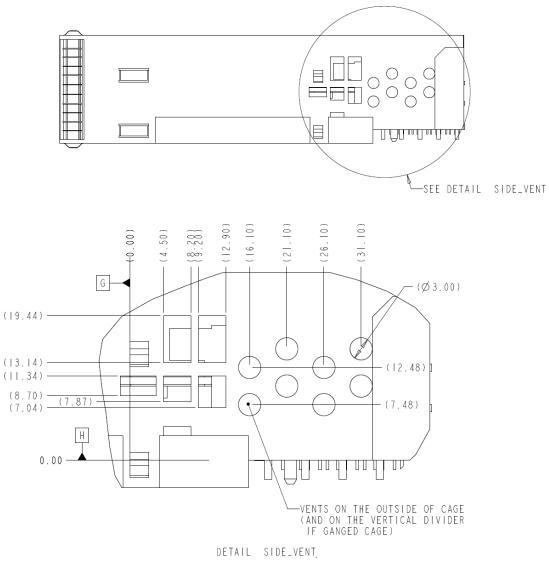


Figure 6-8: Ventilation holes in the side of the cage, and vertical divider

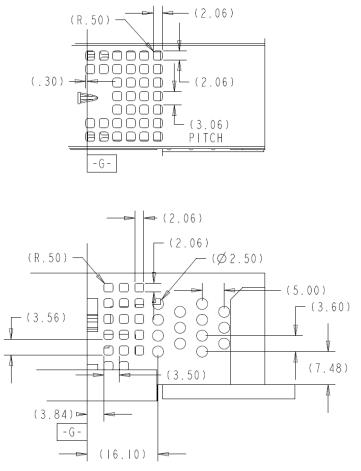
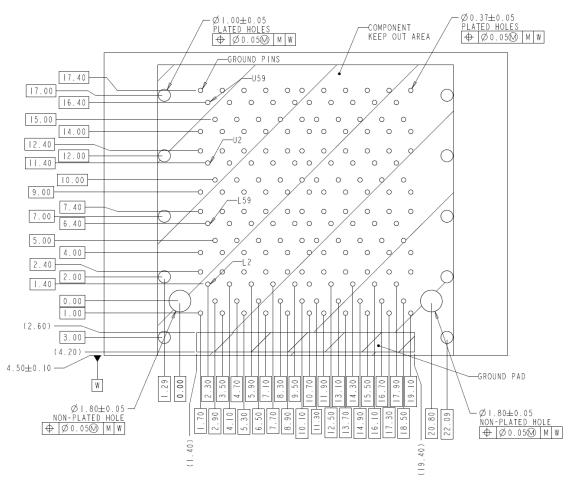



Figure 6-9: Ventilation holes in the top (above view) and side (bottom view) of the cage, alternative example

Rear ventilation pattern, Figure 6-6, is differ with stacked SMT cage in Figure 5-8 because the connector shapes are different. Figure 6-9 shows an alternative example design for top and side vent hole.

6.4 Host PCB Layout – 2x1 Cage

L2: PIN 2 OF THE LOWER PORT. US9: PIN 59 OF THE UPPER PORT. SEE OSFP MODULE PIN OUT FOR PIN NUMBER CODE AND DETAIL FIGURE. Figure 6-10: Host PCB layout for stacked connector

	GROUND PINS UNLESS NOTED
\bigcirc	
	OU58 OU55 OU52 OU49 OUA6 OU41 OU41 OU38 OU35 OU32 OU32 OU30 OU30 OU32 OU32 OU30 OU30 OU30 OU30 OU30 OU30 OU30 OU30
\bigcirc	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	OU3 OU6 OU9 OU12 O $^{1/5}$ OU17 OU20 OU23 OU26 OU29 OU $^{0/6}$ O O O O O O
\bigcirc	$\bigcirc \bigcirc $
	$OL_{28} OL_{25} OL_{22} OL_{49} OL_{46} OL_{44} OL_{41} OL_{38} OL_{35} OL_{32} OL_{45} OL_{$
\bigcirc	0 0 0 0 0 0L15B 0 0 0 0 0 0L2 0L5 0L8 0L11 0L140L16B 0L19 0L22 0L25 0L28
\bigcirc	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
\bigcirc	
Ĺ	DENOTE LOWER PORT, U DENOTES UPPER PORT IN THE STACKED CAGE.

L DENOTE LOWER PORT, U DENOTES UPPER PORT IN THE STACKED CAG SEE OSFP MODULE PINOUT FOR PIN NUMBER CODE. L/U OF I5A/B, I6A/B,45A/B,46A/B ARE POWER PINS.

Figure 6-11: Host PCB pins for stacked connector

6.5 Host PCB Layout – Ganged Stacked Cage

As shown in the Figure 6-12, ganged stacked cages shall have a pitch of 23.38mm.

*2	23.38 PITCH IN GANGED CAGE
•	
o	
o	
0	°
0	

Figure 6-12: Host PCB layout for stacked ganged cage (shown with 2x6)

6.6 Bezel Panel Cut-out

Figure 6-13 shows the bezel cut out for a 2x1 cage. Figure 6-14 shows bezel cut out for a 2x6 cage.

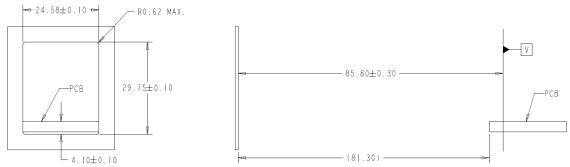


Figure 6-13: Bezel design and location for 2x1 cage

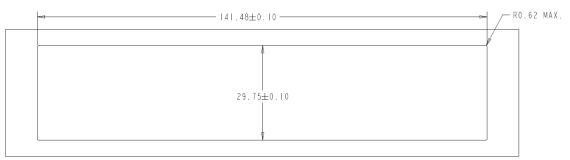


Figure 6-14: Bezel design for 2x6 cage

6.7 Electrical Connector for Stacked Cage (Press-fit)

The stacked electrical connector shall have the following dimensions to properly receive the module as well as allowing for air to pass over the module to the outside.

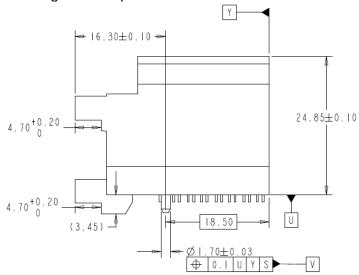


Figure 6-15: Stacked connector, side view

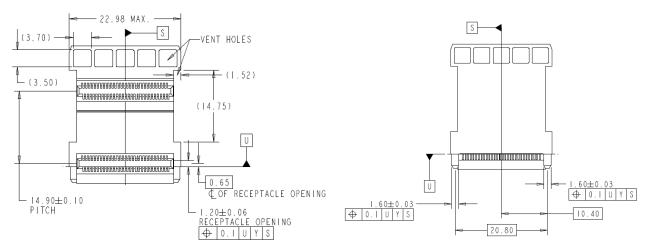


Figure 6-16: Stacked connector, front and back view

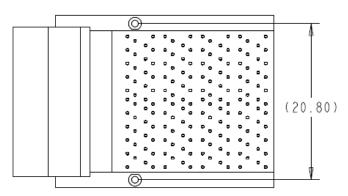


Figure 6-17: Stacked connector, bottom view

7 Plug-in and Removal of an OSFP Module

7.1 Insertion, Extraction, and Retention Forces for an OSFP Module

Table 7-1: Insertion, extraction, and retention forces for an OSFP module

Measurement	Minimum	Maximum	Units	Comments
OSFP Module	N/A	40	N	Module to be inserted into connector and cage with
Insertion		(55)		latch mechanism engaged.
				(55N if the cage have riding heatsink)
OSFP Module	N/A	30	Ν	Module to be removed from connector and cage with
Extraction		(45)		latching mechanism disengaged.
				(45N if the cage have riding heatsink)
OSFP Module	125	N/A	N	No functional damage to module, connector, or cage
Retention in Cage				with latching mechanism activated.

7.2 Durability

The required number of insertion and removal cycles as applicable to the OSFP module and its mating connector and cage are found in Table 7-2. The general requirement as applied to the values in the table is that no functional damage shall occur to the module, connector or cage.

		•
Insertion/Removal Cycles into Connector/Cage	Minimum (cycles)	Comments
Module Cycles	50	Number of cycles for an individual module, to be tested with cage, connector, and module; latches may be locked out during testing
Connector/Cage Cycles	100	Number of cycles for the connector and cage with multiple module, to be tested with cage, connector, and module; latches may be locked out during testing

7	ahla	7.2.	Durability	
I	able	1-Z.	Durability	

8 Thermal Performance

8.1 **OSFP Module Thermal Requirements**

The OSFP module shall operate within one or more of the case temperature ranges defined in Table 8-1. The temperature ranges are applicable between 60m below sea level and 1800m above sea level.

The module supplier is responsible for defining a location in the module where the case temperature be measured or monitored. An internal component with the least thermal margin will be connected to this location.

Class	Case Temperature
Standard	0 through 70°C
Reduced	20 through 60°C
Extended	-5 through 85°C
Industrial	-40 through 85°C
Custom	Custom temperature range. Module shall be able to post temperature range to
	host via management interface.

Table 8-1: Temperature range classes

Table 8-1 defines case temperature only. For reference, touch temperature is controlled by regulatory requirements for handling and incidental contact defined section 3.9.

8.2 **OSFP** Connector Thermal Requirements

The OSFP connector is required to achieve the following thermal requirements while sustaining maximum power as defined in section 11.6.

Table 8-2: OSFP Connector	Thermal Requirements
---------------------------	----------------------

Value
10 years
65 °C
30 °C

8.3 OSFP Module Airflow Impedance Curve

Figure 8-1 shows a typical airflow impedance range of an OSFP (module only) as measured along or through its heat sink. This typical range of airflow impedance can be used as a reference in an OSFP module's heat sink design and system design.

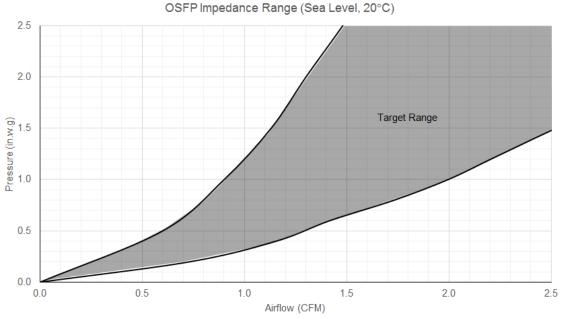


Figure 8-1: Target range of impediment to airflow of an OSFP module (20C, Sea Level)

8.4 Module Airflow Impedance Test Jig

The impedance range of Figure 8-1 was created using a jig as shown in Figure 8-2 and Figure 8-3. The jig is designed to support airflow along the heat sink as well as leakage around the module. The positive stop located within the jig reproduces the assembled condition within a host port. For a Type 2 module, it is normal for the front of the module to protrude beyond the jig opening. A Type 3 module may or may not extend beyond the jig opening.

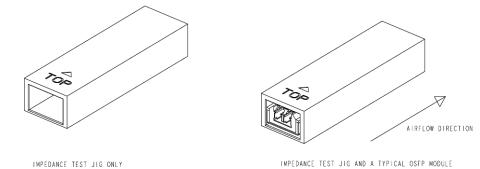
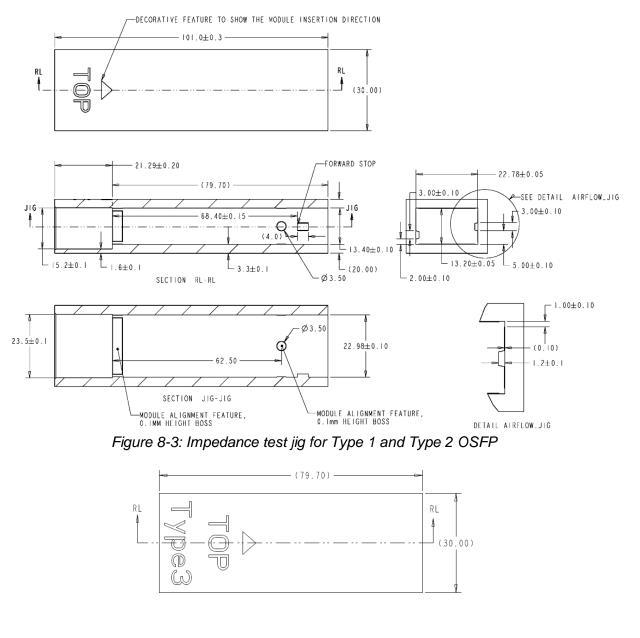



Figure 8-2: Impedance test setup for Type 1 and Type 2 OSFP module (Shown with Type

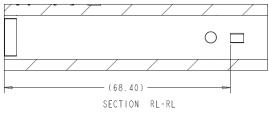


Figure 8-4: Impedance test jig for Type 3 OSFP

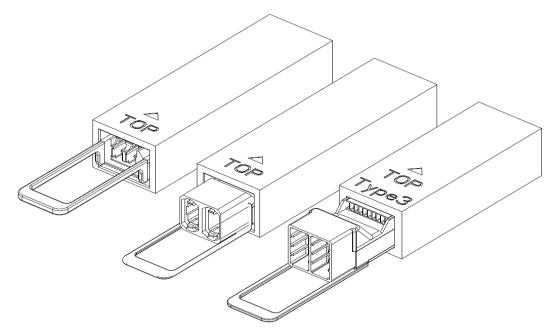


Figure 8-5: Impedance test setup for Type 1, Type 2 and Type 3 OSFP

9 OSFP Riding Heat Sink Module and Cage Mechanical Specification

9.1 Overview

OSFP Riding Heat Sink (OSFP-RHS) is a 9.5mm high pluggable module which does not have an integrated heat sink as shown in the Figure 9-1 and Figure 9-2. In place of OSFP's integrated heat sink, OSFP-RHS cage shall have a riding heat sink. To prevent insertion of OSFP-RHS into a standard OSFP cage, the shape and location of the positive stop has been changed. See Table 9-1 for a comparison between the OSFP-RHS and OSFP.

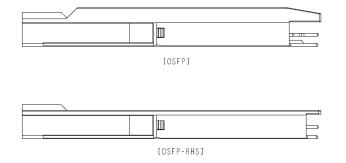


Figure 9-1: Side view of a typical OSFP (top) and a typical OSFP-RHS (bottom)

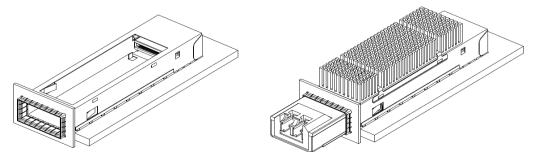


Figure 9-2: OSFP-RHS cage only (left) and OSFP-RHS cage with module and riding heat sink (right)

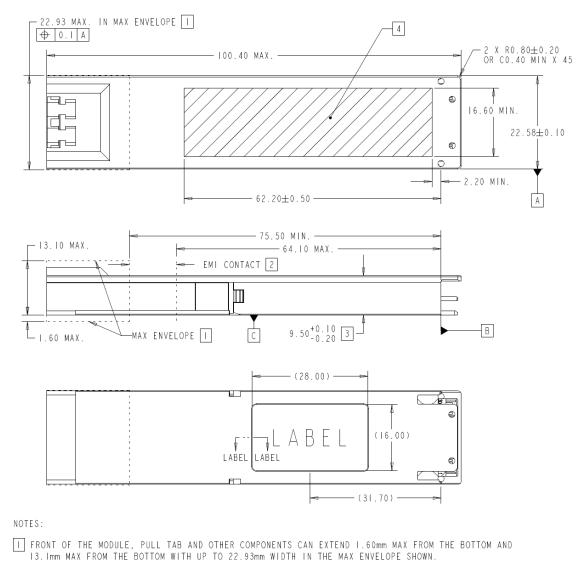
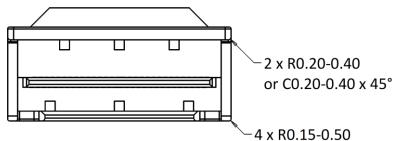

OSFP-RHS feature	Comment	
Module	9.5mm height without heat sink and different positive stop; for the feature which is not explicitly specified for OSFP-RHS, same specification as of OSFP shall be applied.	
Connector	Identical with Surface Mount Connector	
Host PCB Board Layout	Identical with Surface Mount type	
Cage	Port height/positive stop/bezel cutout is different with OSFP	
Insertion/Extraction/Retention	No change; see Table 7-1	
Durability	Identical with OSFP	
Thermal Requirement	Identical with OSFP	
Airflow Requirement	Not applicable (Section 8.2 is not applied)	
Electrical and Management interface	Identical with OSFP	

Table 9-1: Comparison of OSFP-RHS to OSFP

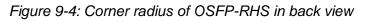
In the following sections, the dimensions of the OSFP-RHS will be defined.

9.2 OSFP-RHS Module Mechanical Specification

Figure 9-3 shows the overall dimension of an OSFP-RHS module from a top view. The reference datum definition is identical with Table 3-1, but note that the location of the datum B (forward stop of the module) is shifted 6mm to prevent an OSFP-RHS from being fully inserted into an OSFP cage as described in section 4 or 5.



2 INDICATED SURFACES (ALL 4 SIDES) TO BE CONDUCTIVE FOR CONNECTION TO CHASSIS GROUND.


3 APPLIES FROM THE TOP OF THE MODULE TO THE BOTTOM OF THE MODULE, INSIDE THE CAGE.

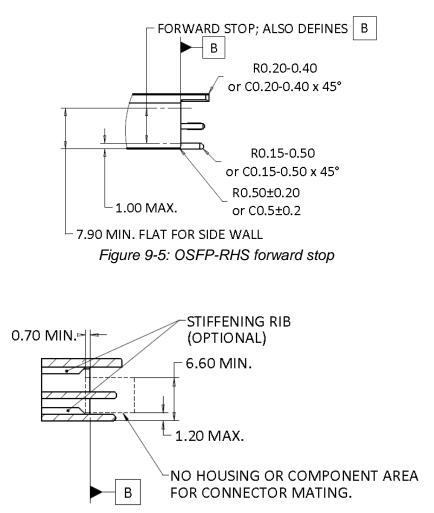

4 SURFACE TO BE THERMALLY CONDUCTIVE. REFER SECTION 9.4 FOR FLATNESS AND ROUGHNESS REQUIREMENTS.

Figure 9-3: Overview of the OSFP-RHS and heat sink contact area

or C0.15-0.50 x 45°

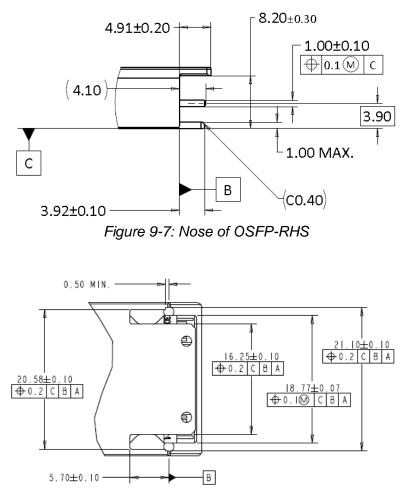


Figure 9-8: Paddle card position (bottom view of module) and module nose width

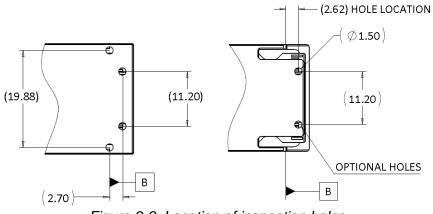


Figure 9-9: Location of inspection holes

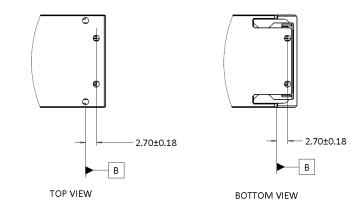
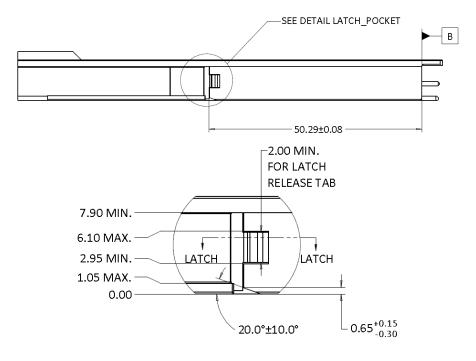
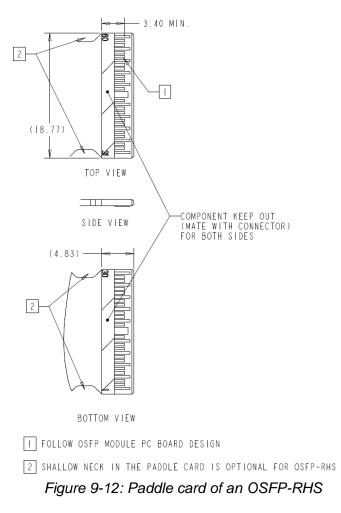



Figure 9-10: Signal pad location with respect to the forward stop



DETAIL LATCH_POCKET

Figure 9-11: Latch pocket details of an OSFP-RHS (See section 3.7 for latch crosssection)

9.3 OSFP-RHS Paddle Card

Interface of the paddle card which mate with connector of an OSFP-RHS is identical with OSFP. Note that, as shown in the Figure 9-12, the shallow neck and the component place avoid area is not required in the OSFP-RHS. This is because the positive stop of the OSFP-RHS is shifted to the rear side of the module.

9.4 OSFP-RHS Thermal Interface Surface Requirements

The thermally conductive area of an OSFP-RHS, as in the Figure 9-3, shall be compliant with specifications in Table 9-2.

Table 9-2: Surface flatness and roughness of the thermally conductive area

OSFP-RHS Power (Max)	Surface Flatness	Surface Roughness
Equal or less than 5W	0.15mm or better	Ra 3.2µm or better
More than 5W	0.12mm or better	Ra 1.6µm or better
Recommended for module with more than 14W (Optional)	0.05mm or better	Ra 0.8µm or better

9.5 OSFP-RHS Cage Mechanical Specification

An OSFP-RHS cage has a lower height than an OSFP cage and makes use of a riding heat sink for cooling. The forward stop feature in an OSFP-RHS cage is shifted compared with an OSFP cage to match with an OSFP-RHS module. See Figure 9-13 to Figure 9-19 for the mechanical specification of the cage for OSFP-RHS. The host PCB foot print is identical with OSFP. Its latch feature is identical, except its geometrical reference (forward stop) has been moved.

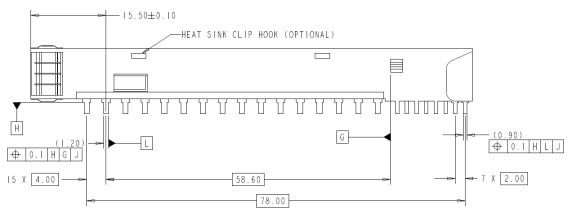


Figure 9-13: Cage positioning pins and forward stop

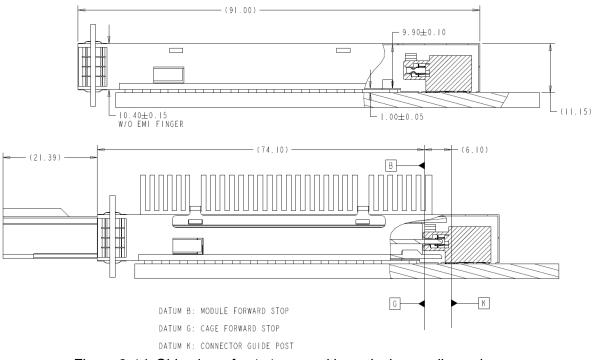


Figure 9-14: Side view of a 1x1 cage with vertical cage dimensions

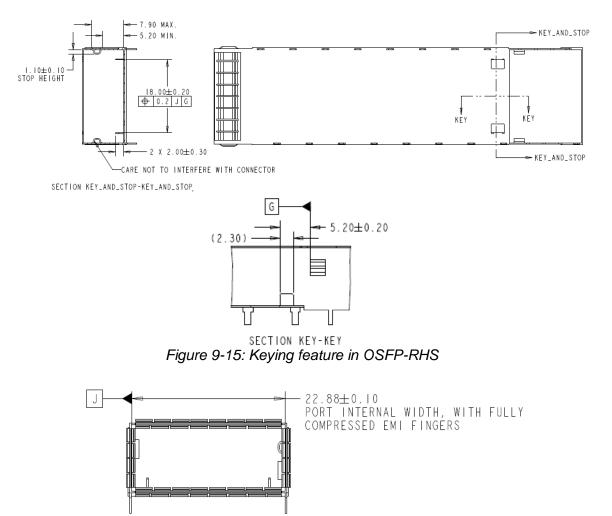


Figure 9-16: Internal width and centerline datum

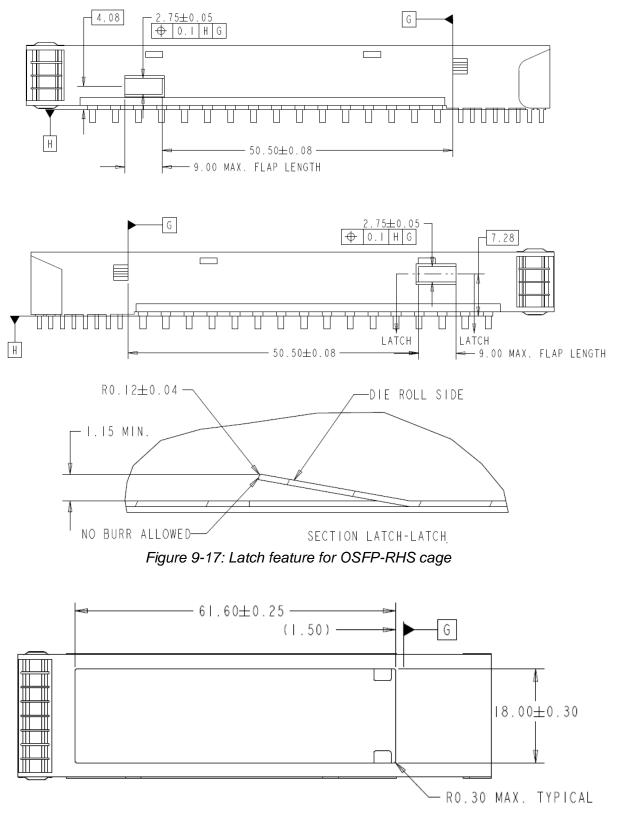


Figure 9-18: Cutout for a riding heat sink in the OSFP-RHS cage

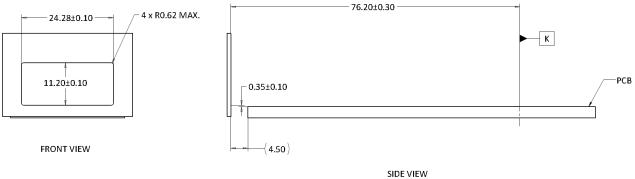


Figure 9-19: Bezel cutout for the OSFP-RHS cage

9.6 Maximum Heat Sink Down Force for an OSFP-RHS Cage

The cage should be designed so that the force which will be applied from the riding heat sink to an OSFP-RHS module shall not exceed 50N downward.

9.7 Custom Height OSFP-RHS

There may be a custom OSFP-RHS with height different than 9.5mm but otherwise having all other attributes of OSFP-RHS. Details of such custom height OSFP-RHS are not provided in this specification.

Below sub-sections illustrate block diagrams for a sampling of optical physical medium dependent sublayers (PMDs) that can be realized in an OSFP form factor. These block diagrams are meant to serve as guidelines for better understanding of the form factor and are by no means exhaustive.

10.1 400G PDM Block Diagrams

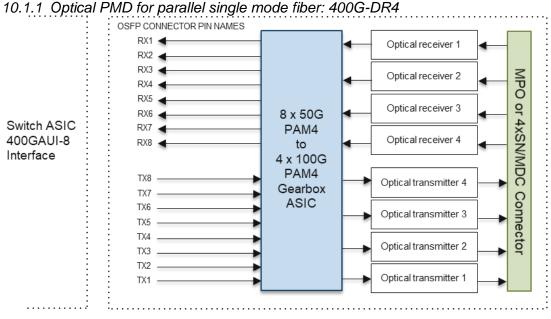



Figure 10-1: Block diagram for 400G-DR4

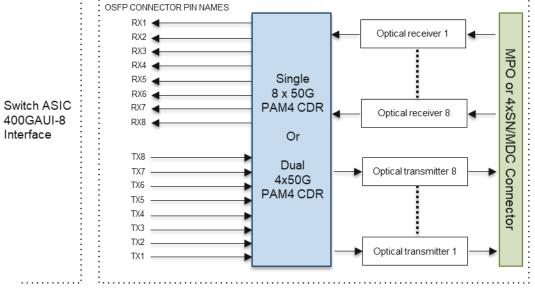


Figure 10-2: Block diagram for 400G-SR8

10.1.3 Optical PMD for parallel multi mode fiber: 400G-SR4.2

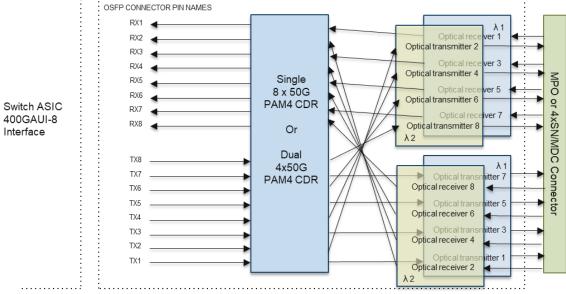
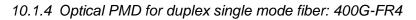



Figure 10-3: Block diagram for 400G-SR4.2

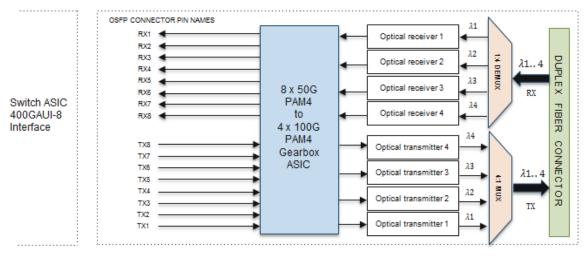


Figure 10-4: Block diagram for 400G-FR4

TX8

TX7

TX6

TX5

TX4

тхз

TX2

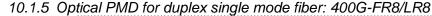
TX1

DUAL DUPLEX FIBER CONNECTOR

RX - 1

λ1...4

TX - 1


λ4

λ4

ŝ

λ1

MUX

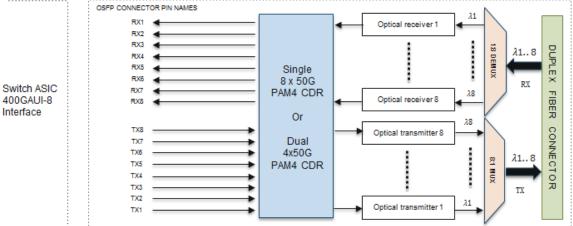


Figure 10-5: Block diagram for 400G-FR8/LR8

OSFP CONNECTOR PIN NAMES λ1 50*G* λ1...4 RX1 Optical receiver 1 i ŝ RX2 ł ŝ RX – RX3 λ4 Rx4 Optical receiver 4 Ch4 RX4 CDR 2 RX5 Tx4 Ch4 OSA 2 50*G* λ4 RX6 ī 1 λ1...4 Optical transmitter 4 t RX7 📥 1 ŝ NUV RX8 Tx1 $\lambda 1$ TX – 2 Optical transmitter 1 Switch ASIC Dual 2x200GAUI-4 4 x 50G Interface λ1 PAM4 CDR 50*G* Optical receiver 1 i λ1...4

8

Ch4

Ch4

i

CDR

10.1.6 Optical PMD for dual duplex single mode fiber: 2x200G-2xFR4

Rx4

Tx4

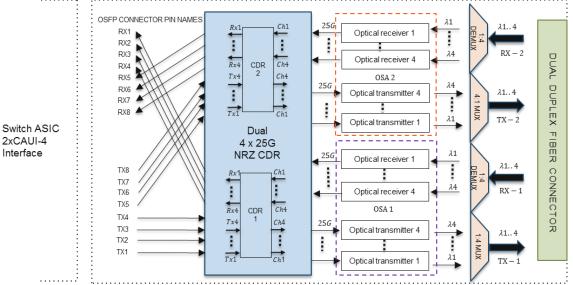
1

Tx1

Figure 10-6: Block diagram for 2x200G-2xFR4

1

50G


ŝ

Optical receiver 4

OSA 1

Optical transmitter 4

Optical transmitter 1

10.1.7 Optical PMD for dual duplex single mode fiber: 2x100G-2xCWDM4

Figure 10-7: Block diagram for 2×100G-2xCWDM4

10.2 800G PMD Block Diagrams

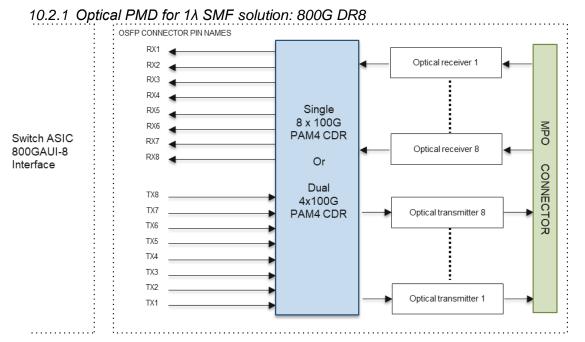


Figure 10-8: Block diagram for 800G OSFP optical PMD for parallel fiber, e.g. 800G DR8

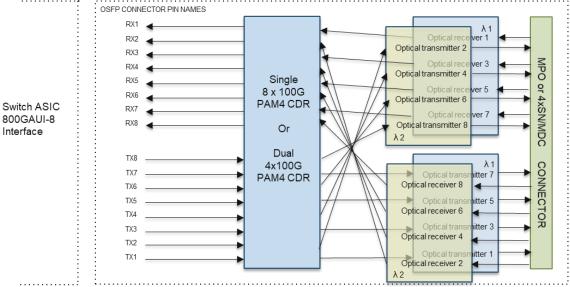
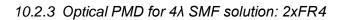



Figure 10-9: Block diagram for 800G-BD4.2

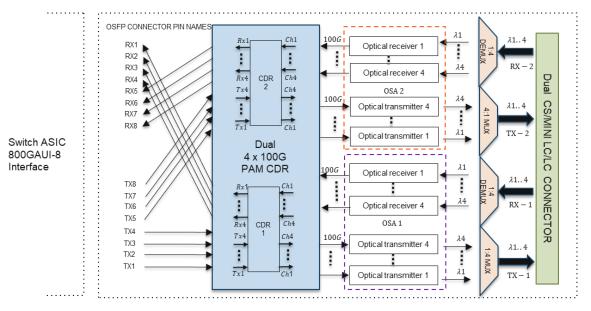
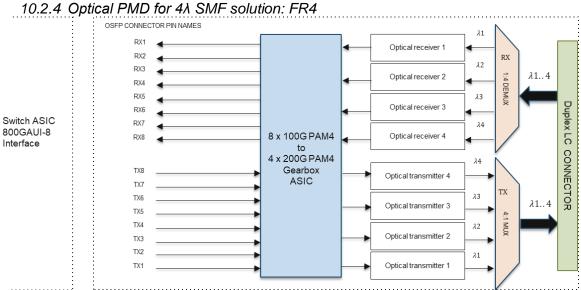



Figure 10-10: Block diagram for 2x400G FR4

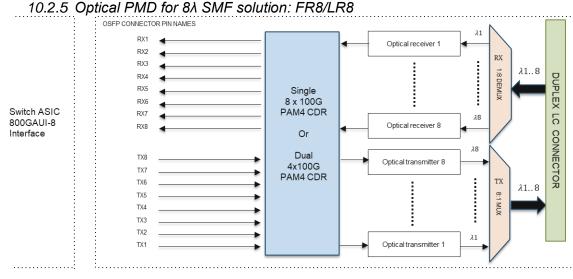
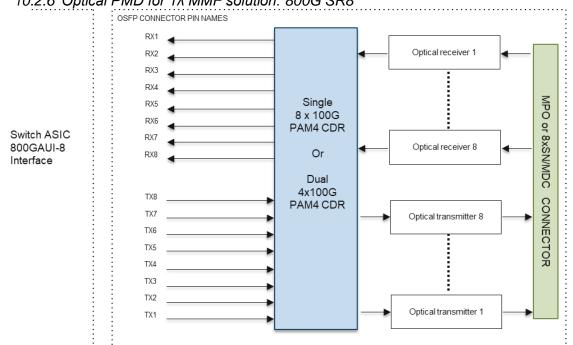



Figure 10-12: Block diagram for 800G OSFP optical PMD for duplex fiber, e.g. 800G, FR8/LR8

10.2.6 Optical PMD for 1λ MMF solution: 800G SR8

Figure 10-13: Block diagram for 800G OSFP optical PMD for parallel fiber, e.g. 800G SR8

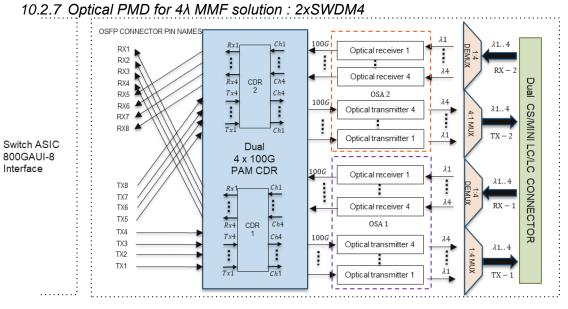


Figure 10-14: Block diagram for 2x400G SWDM4

10.3 OSFP Optical Interface

Optical interfaces that can be used for the OSFP modules are illustrated below. These interfaces are meant to be guideline. The centerline of the optical interface to be aligned with module centerline within 2mm.

10.3.1 Duplex LC Optical Interface

Figure 10-15 shows channel orientation of the optical connector when a duplex LC connector as in IEC 61754-20 is used in an OSFP module. The view is from the front of a typical OSFP module, but actual OSFP module design of the heat sink or height of the optical connector may be different from shown.

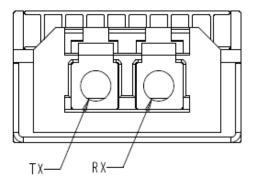
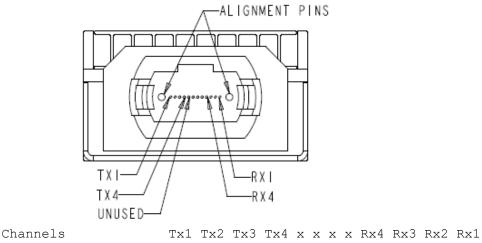
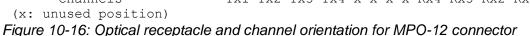
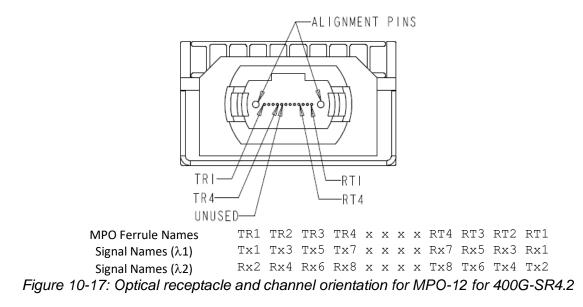
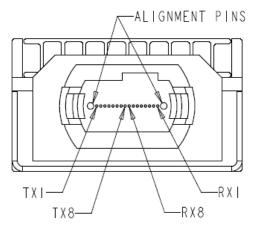



Figure 10-15: Optical receptacle and channel orientation for duplex LC connector

10.3.2 MPO-12 Optical Interface

Figure 10-16 shows channel orientation of the optical connector when a male MPO-12 connector as in the IEC 61754-7-1 is used in an OSFP module for applications except 400G-SR4.2.


Figure 10-17 shows the channel orientation of the optical connector and signal lane mapping when a male MPO-12 connector is used in an OSFP module for 400G-SR4.2 application. There are two signals on two different wavelengths traveling on opposite directions inside each single fiber, as in the example shown in the section 10.1.3.

Fiber connectors that have the same footprint as the MPO connector, such as AirMT[®], or 3M EBO-MP12/16, will use the same guideline for channel orientation as the MPO interface as in this section and 10.3.3, 10.3.4 and 10.3.11.

10.3.3 MPO-16 Optical Interface

Figure 10-18 shows channel orientation of the optical connector when a male MPO-16 connector as in the TIA-604-18 is used in an OSFP module.

Channels Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Tx8 Rx8 Rx7 Rx6 Rx5 Rx4 Rx3 Rx2 Rx1 Figure 10-18: Optical receptacle and channel orientation for MPO-16 connector

10.3.4 MPO-12 Two Row Optical Interface

Figure 10-19 shows channel orientation of the optical connector when a male MPO-12 Two Row connector as in the TIA-604-18 is used in an OSFP module.

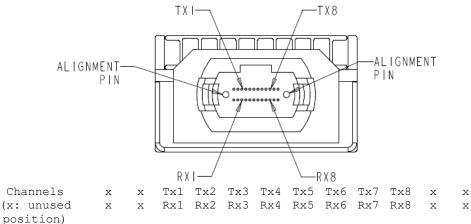


Figure 10-19: Optical receptacle and channel orientation for MPO-12 Two Row connector

10.3.5 MXC Optical Interface

Figure 10-20 shows channel orientation of a MXC connector with 16 fibers when it is used in the OSFP module.

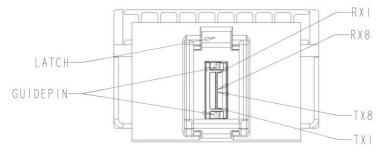


Figure 10-20: Optical receptacle and channel orientation for MXC connector

10.3.6 Dual Mini-LC Optical Interface

Figure *10-21* shows channel orientation of the optical connector when two Mini-LC connectors are used in side by side, consisting a dual mini-LC for an OSFP module. Drawing below shows 11.35mm of pitch between the mini duplex LC connectors. Note that the allowable size of the mating optical connector can be affected by the pitch of the ports on the module design and the optical connector design.

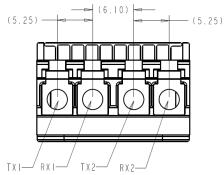


Figure 10-21: Optical receptacle and channel orientation for Dual Mini-LC

10.3.7 Dual Duplex LC Optical Interface

Figure 10-22 shows channel orientation of the optical connector when two duplex LC connectors are used as belly to belly, consisting of a dual duplex LC for an OSFP module.

Note that the allowable size of the mating optical connector can be affected by the pitch of the ports on the module design and the optical connector design. Figure 10-23 depicts the limitation of the size of the LC connector, if there is no interference with the latch release mechanism. This configuration might be implemented in a Type 2 OSFP, as depicted in the Figure 3-3 and Figure 10-22.

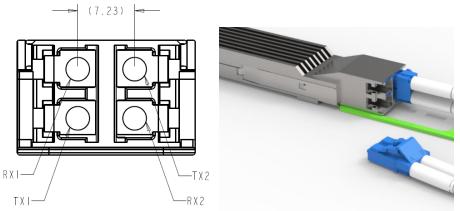


Figure 10-22: Optical receptacle and channel orientation for Dual LC, with an example

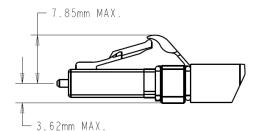


Figure 10-23: LC connector size requirement per given belly-to-belly pitch

10.3.8 Dual CS[®] Optical Interface

Figure 10-24 shows channel orientation of the optical connector when a dual CS^{\otimes} connector is used in an OSFP module. Receptacle 1 (Tx1, Rx1) and receptacle 2 (Tx2, Rx2) are connected with two separate independent duplex fiber cables.

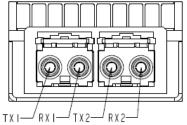
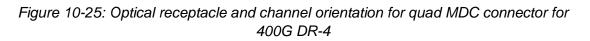
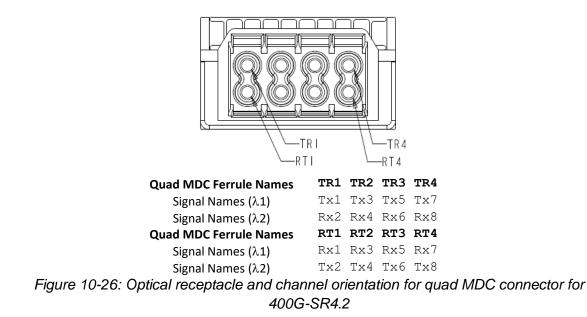


Figure 10-24: Optical receptacle and channel orientation for dual CS® connector

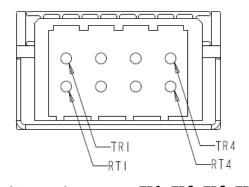

10.3.9 Quad MDC Optical Interface


Figure 10-25 shows channel orientation of the optical connector when a quad MDC connector is used in an OSFP module. Receptacle 1 (Tx1, Rx1), receptacle 2 (Tx2, Rx2), receptacle 3 (Tx3, Rx3), and receptacle 4 (Tx4, Rx4) are connected with four separate independent duplex fiber cables. Figure 10-26 shows for the 400G-SR4.2.

ТΧД

Channels Tx1 Tx2 Tx3 Tx4 Rx1 Rx2 Rx3 Rx4

TXI



10.3.10 Quad SN[®] Optical Interface

Figure 10-27 and Figure 10-28 shows channel orientation of the optical connector when a quad SN^{\otimes} connector is used in an OSFP module. Receptacle 1 (Tx1, Rx1), receptacle 2 (Tx2, Rx2), receptacle 3 (Tx3, Rx3), and receptacle 4 (Tx4, Rx4) are connected with four separate independent duplex fiber cables.

Figure 10-27: Optical receptacle and channel orientation for Quad SN[®] connector for 400G-DR4

TR1	TR2	TR3	TR4
Tx1	Tx3	Tx5	Tx7
Rx2	Rx4	Rx6	Rx8
RT1	RT2	rt3	RT4
Rx1	Rx3	Rx5	Rx7
Tx2	Tx4	Tx6	Tx8
	Γx1 Rx2 RT1 Rx1	<pre>Tx1 Tx3 Rx2 Rx4 RT1 RT2 Rx1 Rx3</pre>	TR1 TR2 TR3 Ix1 Tx3 Tx5 Rx2 Rx4 Rx6 RT1 RT2 RT3 Rx1 Rx3 Rx5 Ix2 Tx4 Tx6

Figure 10-28: Optical receptacle and channel orientation for Quad SN[®] connector for 400G SR4.2

OSFP Module Specification Rev 4.1

10.3.11 Dual MPO Optical Interface

Figure 10-29 shows channel orientation of the optical connector when dual MPO-12 connectors are used in an OSFP module. MPO-12 connectors, which channel assignment within the connector to be as in the Figure 10-16, will be used as depicted in the figure. Note that the allowable size of the mating optical connector can be affected by the pitch of the ports on the module design and the optical connector design, as in the Figure 10-30. This configuration might be implemented in a Type 2 OSFP, as depicted in the Figure 3-3 and Figure 10-31.

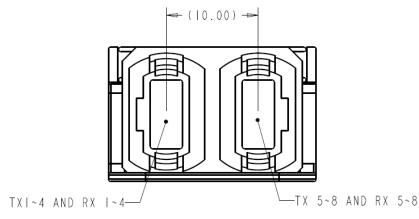


Figure 10-29: Optical receptacle and channel orientation for Dual MPO connector

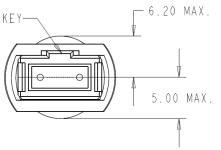


Figure 10-30: MPO connector size requirement per given belly-to-belly pitch

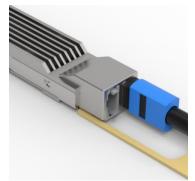


Figure 10-31: Example of an OSFP module with Dual MPO connector

10.3.12 Dual MXC Optical Interface

Figure 10-32 shows channel orientation of the optical connector when dual MXC connectors are used in an OSFP module. Connector 1 will be used for the first half of the channels of the module (TX1~4 and RX 1~4) while the Connector 2 will be used for the second half of the channels of the module (TX5~8 and RX 5~8). Figure 10-33 shows an example of OSFP with dual MXC connectors. This configuration might be implemented in a Type 2 OSFP, as depicted in the Figure 3-3.

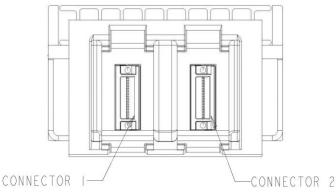


Figure 10-32: Optical receptacle and channel orientation for Dual MXC connector

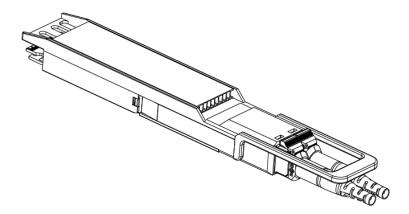


Figure 10-33: Example of an OSFP module with Dual MXC connector

10.3.13 8 x MDC Optical Interface

In addition to the section 10.3.9, 8 MDC connectors can be placed to an OSFP module as in the Figure 10-34. This configuration might be implemented in a Type 3 OSFP, as depicted in the Figure 3-3 and Figure 10-35.

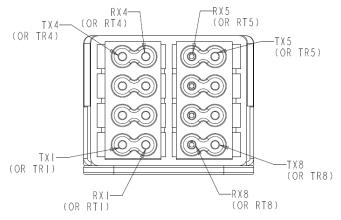


Figure 10-34: Optical receptacle and channel orientation for 8 x MDC connector

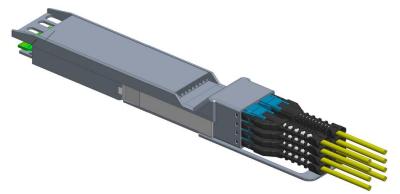


Figure 10-35: Example of a Type 3 OSFP with 8 x MDC connector

10.3.14 8 x SN[®] Optical Interface

In addition to the section 10.3.9, 8 SN[®] connectors can be placed to an OSFP module as in the Figure 10-36. This configuration might be implemented in a Type 3 OSFP, as depicted in the Figure 3-3.

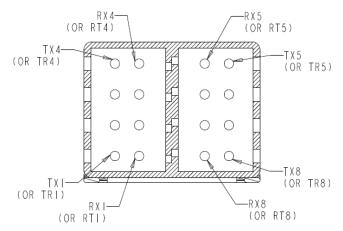


Figure 10-36: Optical receptacle and channel orientation for 8 x SN[®] connector

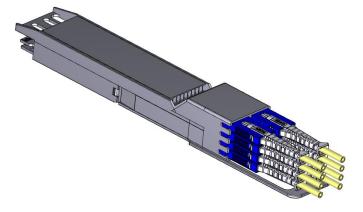


Figure 10-37: Example of a Type 3 module with 8 x SN[®] connector

11 Electrical Interface

11.1 Module Electrical Connector

The electrical interface of an OSFP module consists of a 60 contacts edge connector as illustrated by the diagram in Figure 11-1. It provides 16 contacts for 8 differential pairs of high-speed transmit signals, 16 contacts for 8 differential pairs of high-speed receive signals, 4 contacts for low-speed control signals, 4 contacts for power and 20 contacts for ground.

The edge connector pads have 3 different pad lengths to enable sequencing of the contacts to protect the module against electrostatic discharge (ESD) and provide reliable power up/power down sequencing for the module during insertion and removal. The ground pads are the longest for first contact, the power pads are the second longest for second contact and the signal pads are the third longest for final contact during insertion.

The chassis ground (case common) of the OSFP module shall be isolated from the module's circuit ground, GND, to provide the equipment designer flexibility regarding connections between external electromagnetic interference shields and circuit ground, GND, of the module. When an OSFP module is not installed, the signals to the connector within the unused cage should be disabled to minimize electromagnetic interference (EMI) emissions.

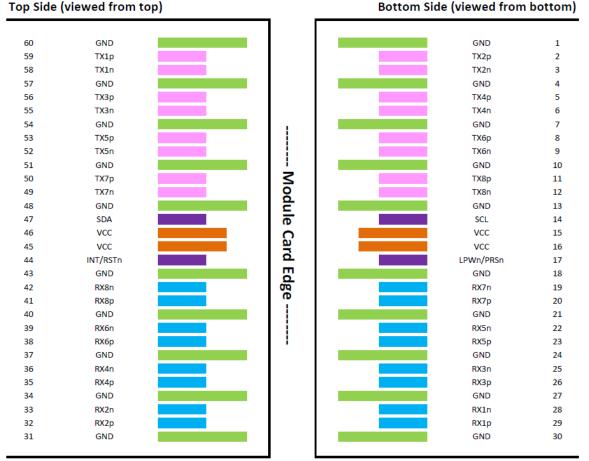


Figure 11-1: OSFP module pinout

11.2 Pin Descriptions

Name	Direction	Description				
TX[8:1]p	input	Transmit differential pairs from host to module.				
TX[8:1]n	input	Transmit differential pairs from host to module.				
RX[8:1]p	output					
RX[8:1]n	output	Receive differential pairs from module to host.				
SCL	bidir	2-wire serial clock signal. Requires pull-up resistor to 3.3V on host.				
SDA	bidir	2-wire serial data signal. Requires pull-up resistor to 3.3V on host.				
LPWn/PRSn	bidir	Multi-level signal for low power control from host to module and module presence indication from module to host. This signal requires the circuit as described in Section 11.5.3				
INT/RSTn	bidir	Multi-level signal for interrupt request from module to host and reset control from host to module. This signal requires the circuit as described in Section 11.5.2				
VCC	power	3.3V power for module.				
GND	ground	Module Ground. Logic and power return path.				

Table 11-1: OSFP module signal pin descriptions

11.3 Pin List

Pin#	Symbol	Description	Logic	Direction	Plug Sequence	Notes
1	GND	Ground			1	
2	TX2p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
3	TX2n	Transmitter Data Inverted	CML-I	Input from Host	3	
4	GND	Ground			1	
5	TX4p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
6	TX4n	Transmitter Data Inverted	CML-I	Input from Host	3	
7	GND	Ground			1	
8	TX6p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
9	TX6n	Transmitter Data Inverted	CML-I	Input from Host	3	
10	GND	Ground			1	
11	TX8p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3	
13	GND	Ground			1	
14	SCL	2-wire Serial interface clock	LVCMOS-I/O	Bi-directional	3	Open-Drain with pull- up resistor on Host
15	VCC	+3.3V Power		Power from Host	2	
16	VCC	+3.3V Power		Power from Host	2	
17	LPWn/PRSn	Low-Power Mode / Module Present	Multi-Level	Bi-directional	3	See pin description for required circuit
18	GND	Ground			1	
19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3	
20	RX7p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
21	GND	Ground			1	
22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3	
23	RX5p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
24	GND	Ground			1	
25	RX3n	Receiver Data Inverted	CML-O	Output to Host	3	
26	RX3p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
27	GND	Ground			1	
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3	
29	RX1p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
30	GND	Ground			1	
31	GND	Ground			1	
32	RX2p	Receiver Data Non-Inverted	CML-O	Output to Host	3	

Table 11-2: OSFP connector pin list

OSFP Module Specification Rev 4.1

Pin#	Symbol	Description	Logic	Direction	Plug Sequence	Notes
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3	
34	GND	Ground			1	
35	RX4p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3	
37	GND	Ground			1	
38	RX6p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
39	RX6n	Receiver Data Inverted	CML-O	Output to Host	3	
40	GND	Ground			1	
41	RX8p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3	
43	GND	Ground			1	
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	Bi-directional	3	See pin description for required circuit
45	VCC	+3.3V Power		Power from Host	2	
46	VCC	+3.3V Power		Power from Host	2	
47	SDA	2-wire Serial interface data	LVCMOS-I/O	Bi-directional	3	Open-Drain with pull- up resistor on Host
48	GND	Ground			1	
49	TX7n	Transmitter Data Inverted	CML-I	Input from Host	3	
50	TX7p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
51	GND	Ground			1	
52	TX5n	Transmitter Data Inverted	CML-I	Input from Host	3	
53	TX5p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
54	GND	Ground			1	
55	TX3n	Transmitter Data Inverted	CML-I	Input from Host	3	
56	ТХЗр	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
57	GND	Ground			1	
58	TX1n	Transmitter Data Inverted	CML-I	Input from Host	3	
59	TX1p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
60	GND	Ground			1	

11.4 High-Speed Signals

The high-speed signals consist of 8 transmit and 8 receive differential pairs identified as TX[8:1]p / TX[8:1]n and RX[8:1]p / RX[8:1]n. These signals can be operated in port configurations of either a single 8-lanes, dual 4-lanes, quad 2-lanes or 8 individual lanes depending on the capability of the host ASIC.

800GAUI-8 mode provides 8 differential lanes using 112G-PAM4 signaling operating at 53.125 GBaud. This results in 8 lanes of 100Gb/s for a total of 800Gb/s. This mode allows connection to PMD configurations of 1x800G, 2x400G, 4x200G or 8x100G.

400GAUI-8 mode provides 8 differential lanes using 56G-PAM4 signaling operating at 26.5625 GBaud. This results in 8 lanes of 50Gb/s for a total of 400Gb/s. This mode allows connection to PMD configurations of 1x400G, 2x200G, 4x100G or 8x50G.

Dual CAUI-4 mode provides 8 differential lanes using 25G-NRZ signaling operating at 25.78125 GBaud. This results in 8 lanes of 25Gb/s for a total of 200Gb/s. This mode allows connection to PMD configurations of 2x100G, 4x50G or 8x25G.

The high-speed signals follow the electrical specifications of IEEE802.3bs, IEEE802.3cd, IEEE802.3ck and CEI-56G-VSR-PAM as defined in OIF-CEI-04.0 for 400GAUI-8 mode and IEEE802.3bj, IEEE802.3bm for CAUI-4 mode.

The lane assignments in Table 11-3 shall be used for the different PMD configurations.

(*L means Lane, L1 means Lane 1 in the port.)								
		Transmit and Receive Lane Assignments						
PMD Configuration	L1	L2	L3	L4	L5	L6	L7	L8
1x800G (112G-PAM4) 1x400G (56G-PAM4)	Port 1							
2x400G (112G-PAM4) 2x200G (56G-PAM4)		Po	rt 1			Po	rt 2	
2x100G (25G-NRZ)	L1*	L2	L3	L4	L1	L2	L3	L4
4x200G (112G-PAM4) 4x100G (56G-PAM4) 4x50G (25G-NRZ)	Po L1	rt 1 L2	Po L1	rt 2 L2	Po L1	rt 3 L2	Po L1	rt 4 L2
8x100G (112G-PAM4) 8x50G (56G-PAM4) 8x25G (25G-NRZ)	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7	Port 8

Table 11-3: High-speed signal lane mapping

11.5 Low-Speed Signals

There are 4 low-speed signals consisting of SCL, SDA, LPWn/PRSn and INT/RSTn. These signals are used for configuration and control of the module by the host. SCL and SDA use 3.3V LVCMOS levels and are bidirectional signals. LPWn/PRSn and INT/RSTn have additional circuitry on the host and module to enable multi-level bidirectional signaling.

11.5.1 SCL and SDA

SCL and SDA are a 2-wire serial interface between the host and module using the I^2C or I3C protocols. SCL is defined as the serial interface clock signal and SDA as the serial interface data signal. Both signals are open-drain and require pull-up resistors to +3.3V on the host. The pull-up resistor value shall be 1k ohms to 4.7k ohms depending on capacitive load.

This 2-wire interface supports bus speeds:

- Required I^2C Fast-mode (Fm) \leq 400 kbit/s
- Optional I²C Fast-mode Plus (Fm+) ≤ 1 Mbit/s
- Optional I3C Single Data Rate (SDR) ≤ 12.5 Mbit/s

The host shall default to using 100 kbit/s standard-mode I²C when first accessing an unidentified module for backward compatibility. Once the module has been brought out of reset, the host can read the module's 2-wire interface speed register to determine the maximum supported speed the module allows. For an OSFP, the host may then use I²C Fast-mode, I²C Fast-mode Plus or I3C Single Data Rate, as indicated by the module. It is optional for the host to change the speed of the 2-wire interface but remaining at a low speed could lead to slow management transactions for modules that require frequent accesses.

SCL and SDA signals follow the electrical specifications of Fast-mode, and Fast-mode Plus as defined in the l^2 C-bus specification or Single Data Rate mode as defined in the Specification for I3C.

11.5.2 INT/RSTn

INT/RSTn is a dual function signal that allows the module to raise an interrupt to the host and also allows the host to reset the module. The circuit shown in Figure 11-3 enables multilevel signaling to provide direct signal control in both directions. Reset is an active-low signal on the host which is translated to an active-low signal on the module. Interrupt is an activehigh signal on the module which gets translated to an active-low signal on the host.

The INT/RSTn signal operates in 3 voltage zones to indicate the state of Reset for the module and Interrupt for the host. Figure 11-2 shows these 3 zones. The host uses a voltage reference at 2.5 volts to determine the state of the H_INTn signal and the module uses a voltage reference at 1.25V to determine the state of the M_RSTn signal.

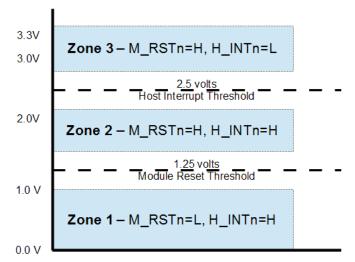


Figure 11-2: INT/RSTn voltage zones

- Zone 1 Reset operation Zone 1 is the state when the module is in reset and interrupt deasserted (M_RSTn=Low, H_INTn=High). The min/max voltages for Zone 1 are defined by parameters V_INT/RSTn_1 and V_INT/RSTn_2 in Table 11-4.
- Zone 2 Normal operation Zone 2 is the normal operating state with reset deasserted (M_RSTn=High) and interrupt deasserted (H_INTn=High). The min/max voltages for Zone 2 are defined by parameter V_INT/RSTn_3 in Table 11-4.

 Zone 3 – Interrupt operation – Zone 3 is the state for the module to assert interrupt and the module must also be out of reset (M_RSTn=High, H_INTn=Low). The min/max voltages for Zone 3 are defined by parameter V_INT/RSTn_4 in Table 11-4.

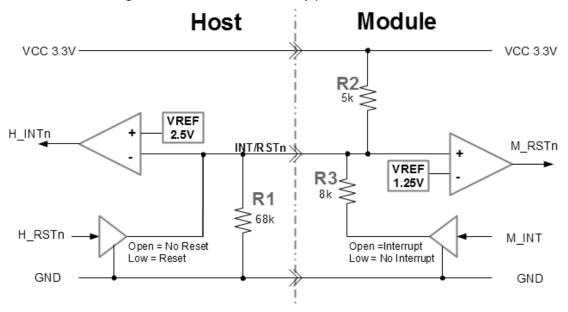


Figure 11-3: INT/RSTn circuit

Parameter	Nominal	Min	Max	Units	Note	
Host VCC	3.300	3.135	3.465	Volts	VCC voltage on the Host	
H_Vref_INTn	2.500	2.475	2.525	Volts	Precision voltage reference for H_INTn	
M_Vref_RSTn	1.250	1.238	1.263	Volts	Precision voltage reference for M_RSTn	
R1	68k	66k	70k	Ohms	Recommend 68.1k ohms 1% resistor	
R2	5k	4.9k	5.1k	Ohms	Recommend 4.99k ohms 1% resistor	
R3	8k	7.8k	8.2k	Ohms	Recommend 8.06k ohms 1% resistor	
V_INT/RSTn_1	0.000	0.000	1.000	Volts	INT/RSTn voltage for No Module	
V_INT/RSTn_2	0.000	0.000	1.000	Volts	INT/RSTn voltage for Module installed, H_RSTn=Low	
V_INT/RSTn_3	1.900	1.500	2.250	Volts	INT/RSTn voltage for Module installed, H_RSTn=Hig M_INT=Low	
V_INT/RSTn_4	3.000	2.750	3.465	Volts	INT/RSTn voltage for Module installed, H_RSTn=Hig M_INT=High	

Table 11-4: INT/RSTn d	circuit parameters
------------------------	--------------------

11.5.3 LPWn/PRSn

LPWn/PRSn is a dual function signal that allows the host to signal Low Power mode and the module to indicate Module Present. The circuit shown in Figure 11-5 enables multi-level signaling to provide direct signal control in both directions. Low Power mode is an active-low signal on the host which gets converted to an active-low signal on the module. Module Present is controlled by a pull-down resistor on the module which gets converted to an active-low logic signal on the host.

The LPWn/PRSn signal operates in 3 voltage zones to indicate the state of Low Power mode for the module and Module Present for the host. Figure 11-4 shows these 3 zones. The host uses a voltage reference at 2.5 volts to determine the state of the H_PRSn signal and the module uses a voltage reference at 1.25V to determine the state of the M_LPWn signal.

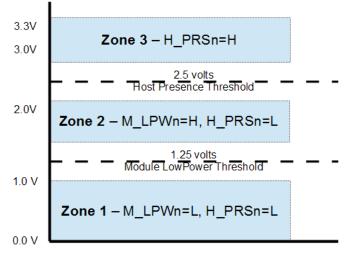


Figure 11-4: LPWn/PRSn voltage zones

- Zone 1 Low Power mode Zone 1 is the low power state and module is present (M_LPWn=Low, H_PRSn=Low). The min/max voltages for Zone 1 are defined by parameters V_LPWn/PRSn_1 in Table 11-5.
- Zone 2 High Power mode Zone 2 is the high power state and module is present (M_LPWn=High, H_PRSn=Low). The min/max voltages for Zone 2 are defined by parameters V_LPWn/PRSn_2 in Table 11-5.
- Zone 3 Module Not Present Zone 3 is the state for when the module is not present (H_PRSn=High). The min/max voltages for Zone 3 are defined by parameters V_LPWn/PRSn_3 in Table 11-5.

Module Removal – If the module is being unplugged and LPWn/PRSn loses contact, the pull-down resistor on the module shall assert Low Power mode on the module (M_LPWn=Low). The module is required to transition to low power (Power Class 1) and disable transmitters within the time specified by T_hplp in Table 11-7. This maximum transition time is to ensure the module is in Low Power mode before the power contacts lose connection to avoid potential damage from arcing.

The LPWn/PRSn signal is driven High or Open by the host for Low Power mode control. If logic is used to generate the High level then 3.3V LVCMOS is preferred.

For very low cost modules, such as DAC, the voltage comparator on the module may be omitted and the LPWn/PRSn pin shall in that case be tied to GND in the module. This type of module may only be used for low power mode (Power Class 1).

The module transmitters must be disabled when in Low Power mode. This ensures Power Class 1 and also provides a fast hardware shut down mechanism for applications such as redundancy switch-over. In addition, software controlled transmitter disable is provided by the TX Disable register via the I²C interface.

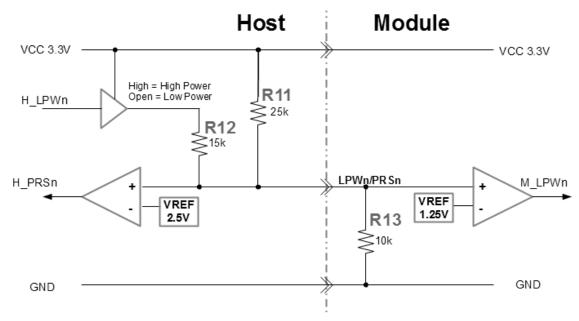


Figure 11-5: LPWn/PRSn circuit

Table 11-5: LPWn/PRSn c	circuit parameters
-------------------------	--------------------

Parameter	Nominal	Min	Max	Units	Note
Host VCC	3.300	3.135	3.465	Volts	VCC voltage on the Host
H_Vref_PRSn	2.500	2.475	2.525	Volts	Precision voltage reference for H_PRSn
M_Vref_LPWn	1.250	1.238	1.263	Volts	Precision voltage reference for M_LPWn
R11	25k	24.5k	25.5k	Ohms	Recommend 24.9k ohms 1% resistor
R12	15k	14.7k	15.3k	Ohms	Recommend 15k ohms 1% resistor
R13	10k	9.8k	10.2k	Ohms	Recommend 10k ohms 1% resistor
V_LPWn/PRSn_1	0.950	0.000	1.100	Volts	LPWn/PRSn voltage for Module installed, H_LPWn=Low
V_LPWn/PRSn_2	1.700	1.400	2.250	Volts	LPWn/PRSn voltage for Module installed, H_LPWn=High
V_LPWn/PRSn_3	3.300	2.750	3.465	Volts	LPWn/PRSn voltage for No Module

11.5.4 Timing for control and status functions

The QSFP-DD specification should be followed for any timing of control and status functions that have not been defined in this specification.

11.5.5 OSFP module power up behavior

The OSFP module shall power up when system power is enabled or on module insertion or on VCC power enable to the module. Once powered, the module shall either wait in Low Power mode or enter High Power mode based on the state of the Reset signal, Low Power signal and ForceLowPwr bit of the module. The ForceLowPwr bit default is pre-programmed in the module by the manufacturer and typically would be set to 0. The host can change the ForceLowPwr bit after power up but it shall return to its pre-programmed default when the module is placed in reset or power cycled. The Reset and Low Power signals are described in sections 11.5.2 and 11.5.3. The ForceLowPwr bit is defined in the OSFP Management Interface Specification.

The table below shows the module power up state based on Low Power and ForceLowPwr. If LPWn=0 then the module shall go to low power mode and transmitters disabled. If ForceLowPwr=0 and LPWn=1 then the module shall immediately enable transmitters. If ForceLowPwr=1 and LPWn=1 then the module shall wait in Low Power mode until the host clears the ForceLowPwr bit for the module to enable transmitters.

Module State	ForceLowPwr = 0	ForceLowPwr = 1	
Low Power asserted	Low Power Mode	Low Power Mode	
(LPWn = 0)	(transmitters Disabled)	(transmitters Disabled)	
Low Power de-asserted	Operational	Low Power Mode	
(LPWn = 1)	(transmitters Enabled*)	(transmitters Disabled)	

*The host may use the management interface to alter this default behavior

11.5.6 OSFP module reset behavior

Reset is a hardware signal from the INT/RSTn pin as defined in section 11.5.2. Asserting Reset overrides all other hardware and software controls and forces the module into the Reset state. This includes forcing Low Power mode and disabling transmitters.

11.6 Power

+3.3V power is delivered to the module via 4 power pins (VCC). These 4 power pins shall be connected together on the module and also together on the host. Each power pin allows up to 2.5 Amps for a total of 10.0 Amps. This enables a maximum power in excess of 30 Watts.

The specification of the module power is in accordance with methods defined by SFF-8679 Rev 1.7 section 5.5. There are 8 power classes defined as shown in Table 11-8. All modules in reset or the default low power mode must comply with Power Class 1. High power mode enables the module to draw power up to its advertised power class, and may be conditionally enabled by the host. The host may read the module power class register to know the power class of the module before or after enabling high power mode. The module shall not exceed the power class it identifies for itself.

Transition between low and high power mode is controlled by the M_RSTn (reset) signal, M_LPWn (low power mode) signal and ForceLowPwr bit. The module shall remain in or transition to low power mode when M_LPWn or M_RSTn are asserted or the ForceLowPwr bit is set. While in low power mode, active modules shall also disable transmitters. The module may transition to high power mode once M_RSTn and M_LPWn are deasserted and the ForceLowPwr bit is cleared.

The specifications of Table 11-7 and Table 11-8 are for the combined power of all 4 power pins. The measurement location for these specifications is at the OSFP connector VCC pins on the host board.

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Module power supply voltage including ripple, droop and noise below 100 kHz	Vcc_Module	3.135	3.300	3.465	V
Host power supply voltage including ripple, droop and noise below 100 kHz	Vcc_Host	3.201	3.300	3.465	V
Voltage drop across mated connector (Vcc_Host minus Vcc_Module)	Vcc_drop			66	mV
Total current for Vcc pins (1)	lcc_module			10.0	А
Host RMS noise output 10 Hz-10 MHz	e N_Host			25	mV
Module RMS noise output 10 Hz - 10 MHz	e N_Mod			15	mV
Module inrush - instantaneous peak duration	T_ip			50	μs
Module inrush - initialization time	T_init			500	ms
Inrush and Discharge Current (2)	I_didt			100	mA/µs
High power mode to Low power mode transition time from assertion of M_LPWn or M_RSTn or ForceLowPwr	T_hplp			200	μs

Table 11-7: OSFP power specification

- (1) Utilization of the maximum OSFP power rating requires thermal design and validation at the system level to ensure the maximum connector temperature is not exceeded. A recommended design practice is to heatsink the host board power pin pads with multiple vias to a thick copper power plane for conductive cooling.
- (2) The specified Inrush and Discharge Current (I_didt) limit shall not be exceeded for all power transient events. This includes hot-plug, hot-unplug, power-up, power-down, initialization, low-power to high-power and high-power to low-power.

	1		1		1		
Parameter	-			Maximum	Units		
Low Power Mode – M_LPWn or M_RSTn asserted or ForceLowPwr							
Power consumption	P_lp			2	W		
Instantaneous peak current at hot plug	lcc_ip_lp			800	mΑ		
Sustained peak current at hot plug	lcc_sp_lp			666	mΑ		
Steady state current (1)	lcc_lp			637	mΑ		
Power Class 1 module (high power mode)							
Power consumption	P_1	ĺ ĺ		1.5	W		
Instantaneous peak current at hot plug	lcc_ip_1			600	mΑ		
Sustained peak current at hot plug	lcc_sp_1			500	mΑ		
Steady state current (1)				478	mΑ		
Power Class 2 module	(high pow	ver mode)					
Power consumption	P_2	ĺ ĺ		3.5	W		
Instantaneous peak current at high power enable	lcc_ip_2			1400	mΑ		
Sustained peak current at high power enable	lcc_sp_2			1167	mΑ		
Steady state current (1)	Icc_2			1116	mΑ		
Power Class 3 module	(high pow	ver mode)		•			
Power consumption	P_3			7	W		
Instantaneous peak current at high power enable	lcc_ip_3			2800	mΑ		
Sustained peak current at high power enable	lcc_sp_3			2333	mΑ		
Steady state current (1)	lcc_3			2233	mΑ		
Power Class 4 module	(high pow	ver mode)		•			
Power consumption	P_4			8	W		
Instantaneous peak current at high power enable	lcc_ip_4			3200	mΑ		
Sustained peak current at high power enable	lcc_sp_4			2666	mΑ		
Steady state current (1)	lcc_4			2552	mΑ		
Power Class 5 module (high power mode)							
Power consumption	P_5			10	W		
Instantaneous peak current at high power enable	lcc_ip_5			4000	mΑ		
Sustained peak current at high power enable	lcc_sp_5			3333	mΑ		
Steady state current (1)	lcc_5			3190	mΑ		
Power Class 6 module (high power mode)							
Power consumption	P_6			12	W		
Instantaneous peak current at high power enable	lcc_ip_6			4800	mΑ		
Sustained peak current at high power enable	lcc_sp_6			4000	mΑ		
Steady state current (1)	lcc_6			3828	mΑ		
Power Class 7 module	(high pow	ver mode)		-			
Power consumption	P_7			14	W		
Instantaneous peak current at high power enable	lcc_ip_7			5600	mΑ		
Sustained peak current at high power enable	lcc_sp_7			4666	mΑ		
Steady state current (1)	lcc_7			4466	mΑ		
Power Class 8 module (high power mode)							
Power consumption	P_8 (2)			>14	W		
Instantaneous peak current at high power enable				P_8 * 400			
Sustained peak current at high power enable	lcc_sp_8			P_8 * 333	mΑ		
Steady state current (1)	lcc_8			7600	mΑ		

Table 11-8: OSFP power classes

(1) Steady state current must not allow power consumption to exceed the specified maximum power for the selected power class.

(2) Power consumption P_8 is readable from the module Max Power register as defined in the Management Specification.

As a reference, the maximum power allowed in the previous revisions in the OSFP MSA are listed in Table 11-9.

OSFP MSA Rev	Max Current	Max Power (at 3.3V nominal)
1.0	6 A	19.8 W
2.0	6.4 A	21.1 W
3.0	6.4 A	21.1 W
4.0	10 A	33.0 W

Table 11-9: OSFP power summary per MSA revision

11.6.1 Power Filter

Figure 11-6 provides an example implementation for a 3.3V power filter on the host board. If an alternate circuit is used for power filtering then the same filter characteristics as this example filter shall be met.

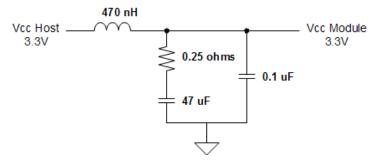


Figure 11-6: Host board power filter circuit

11.6.2 Power Electronic Circuit Breaker (optional)

For safety and protection of the host system, the power to each OSFP module may be protected by an electronic circuit breaker on the host board which is enabled with the H_PRSn signal such that power is only enabled when the module is fully engaged into the OSFP connector.

11.7 OSFP Host Board and Module Block Diagram

Figure 11-7 is an example block diagram of the host board's connections to the OSFP module.

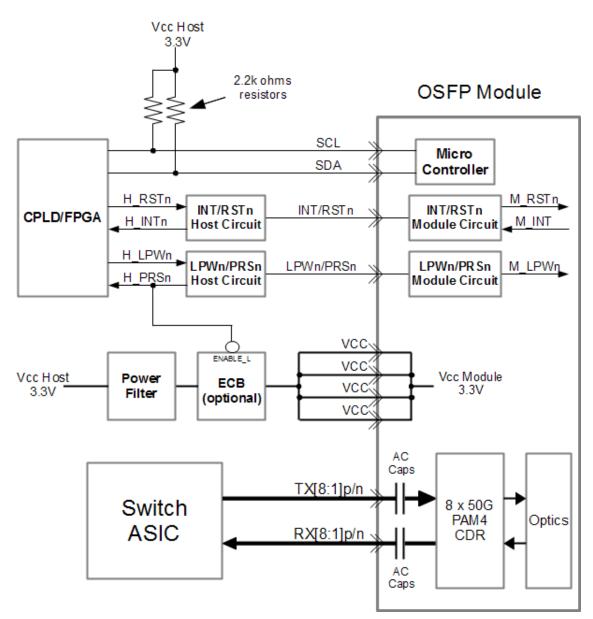


Figure 11-7: Host board and Module block diagram

11.8 Electrostatic Discharge (ESD)

Where ESD performance is not otherwise specified, the OSFP module shall meet ESD requirements given in EN61000-4-2, criterion B test specification when installed in a properly grounded cage and chassis. The units are subjected to 15kV air discharges during operation and 8kV direct contact discharges to the case.

The OSFP module and host high-speed signal, low-speed signal and power contacts shall withstand 1000 V electrostatic discharge based on Human Body Model per ANSI/ESDA/JEDEC JS-001.

Appendix A. OSFP Module LED (Informative)

A.1 LED Indicator and its Scheme

An OSFP module may have one or more LEDs at the front for use as a status indicator. In cases where a single LED is used for status indication of a multi-channel OSFP module, a green/yellow bi-color LED is recommended. In such case, the LED should light solid green when all channels of the module are operational and solid yellow when all channels are disabled. In cases where some channels are operational and some have fault conditions, a repeating pattern of LED flashing as outlined in Table A-1 is recommended.

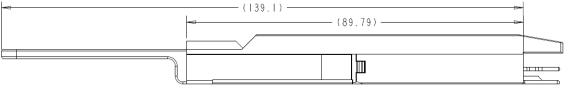
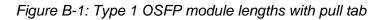

LED Status	Indication	
On for 0.22 seconds	Green indicates channel 1 operational;	
	Yellow indicates channel 1 is non-operational or disabled.	
Off for 0.22 seconds	Pause until LED indicates status of next channel.	
On for 0.22 seconds	Green indicates channel 2 operational;	
	Yellow indicates channel 2 is non-operational or disabled.	
Off for 0.22 seconds	Pause until LED indicates status of next channel.	
Pattern repeats to final (nth) port		
LED off for 1.76 seconds	Long pause for clear separation before pattern repeats from the beginning.	

Table A-1: Suggested OSFP LED signaling scheme for multiple channel modules


Appendix B. OSFP Pull Tab Length (Informative)

B.1 OSFP Pull Tab Length

An OSFP module may have a pull tab. Figure B-1 to B-3 show reference pull tab lengths with respect to the module positive stop. Note that this does not apply to passive copper cables.

[TYPE | MODULE]

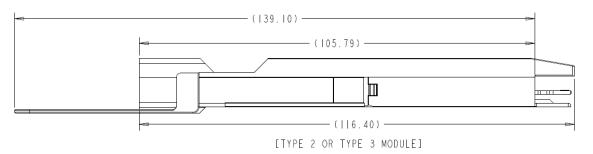
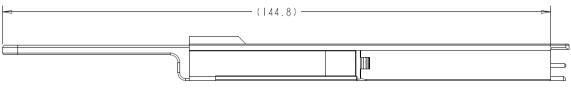



Figure B-2: Type 2 or Type 3 OSFP with pull tab

[OSFP-RHS]

Figure B-3: OSFP-RHS module lengths with pull tab

Appendix C. OSFP with heatsink on the bottom

C.1 Bottom heatsink dimensions

The OSFP module is permitted to have an integrated heatsink on the bottom side for improved thermal control. Figure C-1 and Figure C-2 depict the OSFP module bottom side integrated heatsink design and fin placement. Figure C-3 provides the fin design details. The fin design and placement are consistent with the open top heatsink design specified in section 3.4, to comply with the EMI cage finger in Section 4.3.

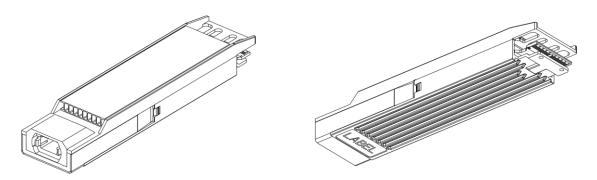


Figure C-1: OSFP module with bottom heatsink

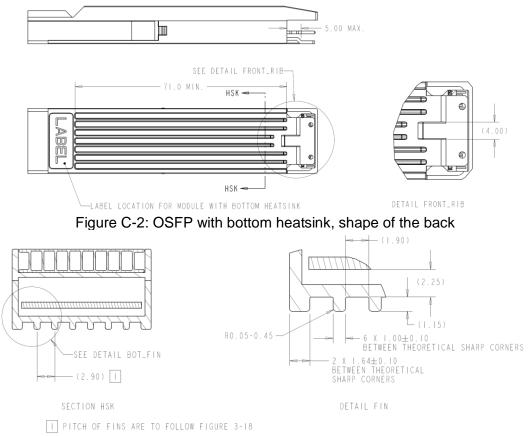


Figure C-3: Bottom heatsink fin pitch