

## QDD-400BD89-1HCM

400Gb/s QSFP-DD SR4 BiDi Optical Transceiver Module

#### **Features**

- QSFP-DD MSA compliant
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Up to 150m OM5 MMF transmission
- Operating case temperature: 0 to 70oC
- Single 3.3V power supply
- Maximum power consumption 12W
- MPO-12 optical connector
- RoHS-6 compliant

## **Applications**

- Data Center
- Infiniband HDR, EDR

### **General Description**

This product can support 400Gb/s bit rates. It is a parallel Quad Small Form-factor Pluggable—double density (QSFP-DD) Bi-Direction optical module. The module accepts eight host electrical data and transmits them in two groups of optical bi-directional lanes (each group contains 4 pairs of optical lane) to allow optical communication over optical multi-mode fibers. Reversely, on the receiver side, the module accepts 8 sets of optical input signal and converts them to 8 channels of electrical data.

An optical fiber with an MPO-12 connector can be plugged into the QSFP-DD module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an MSA-compliant 76-pin edge type connector.

The module operates by a single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.



The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

## **Functional Description**

This product can support 425Gb/s bit rates. It is a parallel Quad Small Form-factor Pluggable—double density (QSFP-DD) Bi-Direction optical module. The module converts eight host electrical data into two groups of optical bi-directional lanes (each group contains 4 pairs of optical lane) to allow optical communication over optical multi-mode fibers. The transmitter of first group is 850nm VCSEL basis, it is 908nm VCSEL basis for the second group. On the receiver side, the module accepts 8 sets of optical input signal and transmits them to 8 channels of electrical data. The receiver module outputs electrical signals are also voltage compatible with Common Mode Logic (CML) levels.

This product is allowed for two typical applications: The first application is QSFP-DD SR4.2 to QSFP-DD SR4.2 point to point communication. The second application is QSFP-DD SR4.2 to 4x QSFP28 SR1.2 breakout communication. Figure 1 shows the functional block diagram of this product.

A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire

serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data\_Not\_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power



Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signal description.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

## **Transceiver Block Diagram**

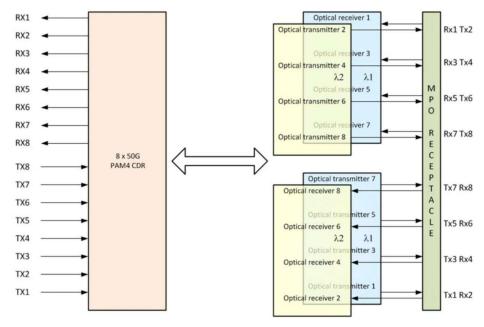



Figure 1. Transceiver Block Diagram



# **Pin Assignment and Description**



Figure 2. MSA Compliant Connector

## **Pin Definition**

| Pin # | Logic | Symbol | Description                         | Plug Sequence |
|-------|-------|--------|-------------------------------------|---------------|
| 1     |       | GND    | Ground                              | 1B            |
| 2     | CML-I | Tx2n   | Transmitter Inverted Data Input     | 3B            |
| 3     | CML-I | Tx2p   | Transmitter Non-Inverted Data Input | 3B            |





| 4  |                | GND      | Ground                                                                              | 1B |
|----|----------------|----------|-------------------------------------------------------------------------------------|----|
| 5  | CML-I          | Tx4n     | Transmitter Inverted Data Input                                                     | 3B |
| 6  | CML-I          | Tx4p     | Transmitter Non-Inverted Data Input                                                 | 3B |
| 7  |                | GND      | Ground                                                                              | 1B |
| 8  | LVTTL-I        | ModSelL  | Module Select                                                                       | 3B |
| 9  | LVTTL-I        | ResetL   | Module Reset                                                                        | 3B |
| 10 |                | VccRx    | +3.3V Power Supply Receiver                                                         | 2B |
| 11 | LVCMOS-<br>I/O | SCL      | 2-wire serial interface clock                                                       | 3B |
| 12 | LVCMOS-<br>I/O | SDA      | 2-wire serial interface data                                                        | 3B |
| 13 |                | GND      | Ground                                                                              | 1B |
| 14 | CML-O          | Rx3p     | Receiver Non-Inverted Data Output                                                   | 3B |
| 15 | CML-O          | Rx3n     | Receiver Inverted Data Output                                                       | 3B |
| 16 | GND            | Ground   | 1B                                                                                  |    |
| 17 | CML-O          | Rx1p     | Receiver Non-Inverted Data Output                                                   | 3B |
| 18 | CML-O          | Rx1n     | Receiver Inverted Data Output                                                       | 3B |
| 19 |                | GND      | Ground                                                                              | 1B |
| 20 |                | GND      | Ground                                                                              | 1B |
| 21 | CML-O          | Rx2n     | Receiver Inverted Data Output                                                       | 3B |
| 22 | CML-O          | Rx2p     | Receiver Non-Inverted Data Output                                                   | 3B |
| 23 |                | GND      | Ground                                                                              | 1B |
| 24 | CML-O          | Rx4n     | Receiver Inverted Data Output                                                       | 3B |
| 25 | CML-O          | Rx4p     | Receiver Non-Inverted Data Output                                                   | 3B |
| 26 |                | GND      | Ground                                                                              | 1B |
| 27 | LVTTL-O        | ModPrsL  | Module Present                                                                      | 3B |
| 28 | LVTTL-O        | IntL     | Interrupt                                                                           | 3B |
| 29 |                | VccTx    | +3.3V Power supply transmitter                                                      | 2B |
| 30 |                | Vcc1     | +3.3V Power supply                                                                  | 2B |
| 31 | LVTTL-I        | InitMode | Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE | 3B |
| 32 |                | GND      | Ground                                                                              | 1B |
| 33 | CML-I          | Tx3p     | Transmitter Non-Inverted Data Input                                                 | 3B |
| 34 | CML-I          | Tx3n     | Transmitter Inverted Data Input                                                     | 3B |
| 35 |                | GND      | Ground                                                                              | 1B |
| 36 | CML-I          | Tx1p     | Transmitter Non-Inverted Data Input                                                 | 3B |
| 37 | CML-I          | Tx1n     | Transmitter Inverted Data Input                                                     | 3B |
| 38 |                | GND      | Ground                                                                              | 1B |
| 39 |                | GND      | Ground                                                                              | 1A |
| 40 | CML-I          | Tx6n     | Transmitter Inverted Data Input                                                     | 3A |
| 41 | CML-I          | Тх6р     | Transmitter Non-Inverted Data Input                                                 | 3A |
| 42 |                | GND      | Ground                                                                              | 1A |
| 43 | CML-I          | Tx8n     | Transmitter Inverted Data Input                                                     | 3A |
| 44 | CML-I          | Tx8p     | Transmitter Non-Inverted Data Input                                                 | 3A |





| 45 |       | GND      | Ground                              | 1A |
|----|-------|----------|-------------------------------------|----|
| 46 |       | Reserved | For future use                      | 3A |
| 47 |       | VS1      | Module Vendor Specific 1            | 3A |
| 48 |       | VccRx1   | 3.3V Power Supply                   | 2A |
| 49 |       | VS2      | Module Vendor Specific 2            | 3A |
| 50 |       | VS3      | Module Vendor Specific 3            | 3A |
| 51 |       | GND      | Ground                              | 1A |
| 52 | CML-O | Rx7p     | Receiver Non-Inverted Data Output   | 3A |
| 53 | CML-O | Rx7n     | Receiver Inverted Data Output       | 3A |
| 54 |       | GND      | Ground                              | 1A |
| 55 | CML-O | Rx5p     | Receiver Non-Inverted Data Output   | 3A |
| 56 | CML-O | Rx5n     | Receiver Inverted Data Output       | 3A |
| 57 |       | GND      | Ground                              | 1A |
| 58 |       | GND      | Ground                              | 1A |
| 59 | CML-O | Rx6n     | Receiver Inverted Data Output       | 3A |
| 60 | CML-O | Rx6p     | Receiver Non-Inverted Data Output   | 3A |
| 61 |       | GND      | Ground                              | 1A |
| 62 | CML-O | Rx8n     | Receiver Inverted Data Output       | 3A |
| 63 | CML-O | Rx8p     | Receiver Non-Inverted Data Output   | 3A |
| 64 |       | GND      | Ground                              | 1A |
| 65 |       | NC       | No Connect                          | 3A |
| 66 |       | Reserved | For future use                      | 3A |
| 67 |       | VccTx1   | 3.3V Power Supply                   | 2A |
| 68 |       | Vcc2     | 3.3V Power Supply                   | 2A |
| 69 |       | Reserved | For Future Use                      | 3A |
| 70 |       | GND      | Ground                              | 1A |
| 71 | CML-I | Тх7р     | Transmitter Non-Inverted Data Input | 3A |
| 72 | CML-I | Tx7n     | Transmitter Inverted Data Input     | 3A |
| 73 |       | GND      | Ground                              | 1A |
| 74 | CML-I | Тх5р     | Transmitter Non-Inverted Data Input | 3A |
| 75 | CML-I | Tx5n     | Transmitter Inverted Data Input     | 3A |
| 76 |       | GND      | Ground                              | 1A |

# **Optical Interface Lanes and Assignment**

Figure 3 shows the orientation of the multi-mode fiber facets of the optical connector. Table 1 provides the lane assignment.



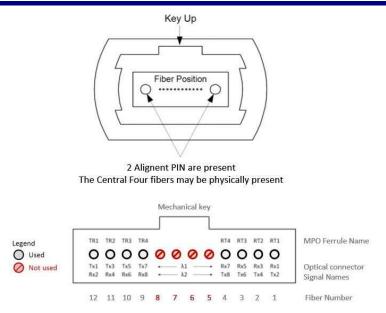



Figure 3. Outside View of the QSFPDD MPO-12 Receptacle

# **Recommended Power Supply Filter**

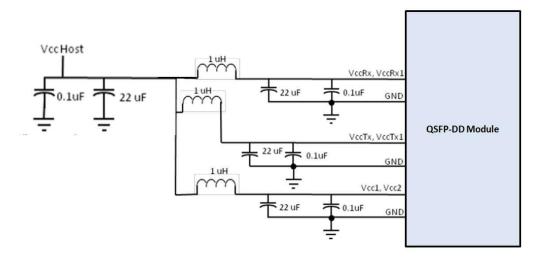



Figure 4. Recommended Power Supply Filter

# **Absolute Maximum Ratings**

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

| Parameter                  | Symbol          | Min | Max | Unit |
|----------------------------|-----------------|-----|-----|------|
| Storage Temperature        | Ts              | -40 | 85  | degC |
| Operating Case Temperature | T <sub>OP</sub> | 0   | 70  | degC |



| Power Supply Voltage                 | V <sub>CC</sub> | -0.5 | 3.6 | V   |
|--------------------------------------|-----------------|------|-----|-----|
| Relative Humidity (non-condensation) | RH              | 0    | 85  | %   |
| Damage Threshold, each Lane          | THd             | 3.4  |     | dBm |

# **Recommended Operating Conditions**

| Parameter                  | Symbol | Min   | Typical | Max      | Units | Notes |
|----------------------------|--------|-------|---------|----------|-------|-------|
| Operating Case Temperature | TOP    | 0     |         | 70       | degC  |       |
| Power Supply Voltage       | VCC    | 3.135 | 3.3     | 3.465    | V     |       |
| Data Rate, each Lane       |        |       | 26.5625 |          | GBd   | PAM4  |
| Data Rate Accuracy         |        | -100  |         | 100      | ppm   |       |
| Pre-FEC Bit Error Ratio    |        |       |         | 2.4x10-4 |       |       |
| Post-FEC Bit Error Ratio   |        |       |         | 1x10-12  |       | 1     |
| Link Distance with OM3     | D      | 0.5   |         | 70       | m     | 2     |

### Notes:

## **Electrical Characteristics**

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

| Parameter                                        | Test<br>Point           | Min                                        | Typical | Max  | Units | Notes |  |
|--------------------------------------------------|-------------------------|--------------------------------------------|---------|------|-------|-------|--|
| Power Consumption                                |                         |                                            |         | 12   | W     |       |  |
| Supply Current                                   | lcc                     |                                            |         | 3.63 | Α     |       |  |
|                                                  | Transmitter (each Lane) |                                            |         |      |       |       |  |
| Signaling Rate, each Lane                        | TP1                     | TP1 26.5625 ± 100 ppm                      |         |      | GBd   |       |  |
| Differential pk-pk Input Voltage<br>Tolerance    | TP1a                    | 900                                        |         |      | mVpp  | 1     |  |
| Differential Termination Mismatch                | TP1                     |                                            |         | 10   | %     |       |  |
| Differential Input Return Loss                   | TP1                     | IEEE 802.3-<br>2015<br>Equation<br>(83E-5) |         |      | dB    |       |  |
| Differential to Common Mode<br>Input Return Loss | TP1                     | IEEE 802.3-<br>2015<br>Equation<br>(83E-6) |         |      | dB    |       |  |

<sup>1.</sup> FEC provided by host system.

<sup>2.</sup> FEC required on host system to support maximum distance.



| Module Stressed Input Test                            | TP1a | See IEEE 802.3bs 120E.3.4.1                |             |      | 2    |   |  |  |
|-------------------------------------------------------|------|--------------------------------------------|-------------|------|------|---|--|--|
| Single-ended Voltage<br>Tolerance Range (Min)         | TP1a | -0.4 to 3.3                                |             | V    |      |   |  |  |
| DC Common Mode Input Voltage                          | TP1  | -350                                       |             | 2850 | mV   | 3 |  |  |
| Receiver (each Lane)                                  |      |                                            |             |      |      |   |  |  |
| Signaling Rate, each lane                             | TP4  | 26.562                                     | 5 ± 100 ppm |      | GBd  |   |  |  |
| Differential Peak-to-Peak<br>Output Voltage           | TP4  |                                            |             | 900  | mVpp |   |  |  |
| AC Common Mode Output<br>Voltage, RMS                 | TP4  |                                            |             | 17.5 | mV   |   |  |  |
| Differential Termination Mismatch                     | TP4  |                                            |             | 10   | %    |   |  |  |
| Differential Output Return Loss                       | TP4  | IEEE 802.3-<br>2015<br>Equation<br>(83E-2) |             |      |      |   |  |  |
| Common to Differential Mode<br>Conversion Return Loss | TP4  | IEEE 802.3-<br>2015<br>Equation<br>(83E-3) |             |      |      |   |  |  |
| Transition Time, 20% to 80%                           | TP4  | 9.5                                        |             |      | ps   |   |  |  |
| Near-end Eye Symmetry Mask<br>Width (ESMW)            | TP4  |                                            | 0.265       |      | UI   |   |  |  |
| Near-end Eye Height, Differential                     | TP4  | 70                                         |             |      | mV   |   |  |  |
| Far-end Eye Symmetry Mask<br>Width (ESMW)             | TP4  |                                            | 0.2         |      | UI   |   |  |  |
| Far-end Eye Height,<br>Differential                   | TP4  | 30                                         |             |      | mV   |   |  |  |
| Far-end Pre-cursor ISI Ratio                          | TP4  | -4.5                                       |             | 2.5  | %    |   |  |  |
| Common Mode Output Voltage (Vcm)                      | TP4  | -350                                       |             | 2850 | mV   | 3 |  |  |

#### Notes:

- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.
- $\dot{}$  3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

# **Optical Characteristics**

| Parameter          | Symbol | Min | Typical | Max             | Units | Notes |
|--------------------|--------|-----|---------|-----------------|-------|-------|
| Transmitter        |        |     |         |                 |       |       |
| Center Wavelength  | λ1     | 844 |         | 863             | nm    |       |
| Center Wavelength  | λ2     | 900 |         | 918             | nm    |       |
| RMS Spectral Width | Δλrms  |     |         | λ1:0.6 λ2: 0.65 | nm    |       |



| Average Launch Power, each Lane                    | PAVG  | -6.5                              |             | 4                                             | dBm   | 1 |
|----------------------------------------------------|-------|-----------------------------------|-------------|-----------------------------------------------|-------|---|
| Optical Modulation Amplitude (OMA),<br>each Lane   | POMA  | -4.5                              |             | 3                                             | dBm   | 2 |
| Launch power in OMA minus TDECQ, each lane         |       | -5.9                              |             |                                               | dBm   |   |
| Transmitter Dispersion Penalty ,each lane          | TDECQ |                                   |             | 4.5                                           | dB    | 3 |
| TDECQ – 10log10(Ceq), each lane                    |       |                                   |             | 4.5                                           |       | 4 |
| Extinction Ratio                                   | ER    | 3.0                               |             |                                               | dB    |   |
| RIN12 OMA                                          |       |                                   |             | -128                                          | dB/Hz |   |
| Optical Return Loss Tolerance                      | TOL   | 12                                |             |                                               | dB    |   |
| Average Launch Power OFF<br>Transmitter, each Lane | Poff  |                                   |             | -30                                           | dBm   |   |
| Encircled Flux                                     |       | ≥ 86% at 19 µm<br>≤ 30% at 4.5 µm |             |                                               |       | 5 |
|                                                    |       | Receiver                          |             |                                               |       |   |
| Signaling rate, each lane                          |       |                                   | 26.5625± 10 | 00ррт                                         | Gbps  |   |
| Center Wavelength Lane0                            | λ1    | 844                               |             | 863                                           | nm    |   |
| Center Wavelength Lane1                            | λ2    | 900                               |             | 918                                           | nm    |   |
| Damage Threshold, each Lane                        | THd   | 5                                 |             |                                               | dBm   | 6 |
| Average Receive Power, each Lane                   |       | -8.5                              |             | 4                                             | dBm   | 7 |
| Receive Power (OMA), each Lane                     |       |                                   |             | 3.0                                           | dBm   |   |
| Receiver Sensitivity (OMA), each Lane              | SEN   |                                   |             | Max (-<br>6.6, SECQ – 8)<br>Refer to Figure 5 | dBm   | 9 |
| Receiver Reflectance                               | RR    |                                   |             | -12                                           | dB    |   |
| Stressed receiver sensitivity in OMA, each lane    |       |                                   |             | -3.5                                          | dBm   | 8 |

#### Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1.4 dB, the OMAouter (min) must exceed this value.
- 3. TDECg is specified and measured as per IEEE802.3.cm Clause 150.8.5.
- 4. Ceq is a coefficient defined in IEEE 802.3-2018 Clause 121.8.5.8, which accounts for the reference equalizer noise enhancement
- 5. If measured into type A1a.2, or type A1a.3, or type A1a.4, 50 um fibers in accordance with IEC 61280-1-4.
- 6. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.
- 7. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 8. Measured with a conformance test signal at TP3 (see IEEE 802.3 Cl 150) for the BER specified. They are not characteristics of the receiver. The conditions for measuring stressed receiver sensitivity are the following:



| Stressed eye closure (SECQ), lane under tes`t | 4.5 | dB  |
|-----------------------------------------------|-----|-----|
| SECQ – 10log10(Ceq) lane under test (max)     | 4.5 | dBm |
| OMAouter of each aggressor lane               | 3.0 | dBm |

9. These test conditions are for measuring stressed receiver sensitivity. Receiver sensitivity is considered a normative requirement. RX sensitivity is defined for a transmitter with a value of SECQ up to 4.5dB. For transmitter with SECQ different from 4.5dB, limit is reported as per figure 5

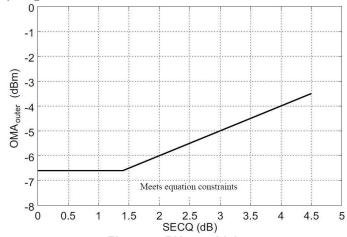



Figure 5. RX sensitivity

## **Mechanical Dimensions**

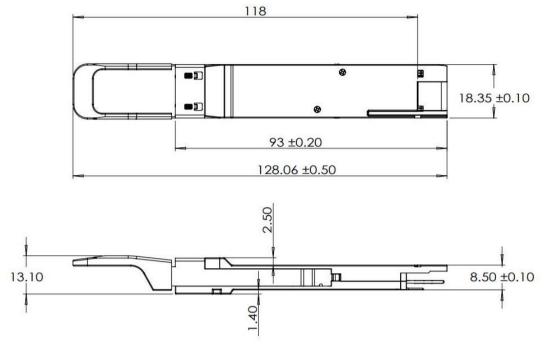



Figure 6. Mechanical Outline



#### **ESD**

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all others electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114- A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

# **Ordering Information**

| Part Number      | Product Description                |
|------------------|------------------------------------|
| QDD-400BD89-1HCM | 400Gbps, Duplex LC, 10km, with DDM |

## **Laser Safety**

This is a Class 1M Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

AscentOptics reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Copyright © Ascent Optics All Rights Reserved.

E-mail: sales@ascentoptics.com Web: http://www.ascentoptics.com