

XFP-10SM31-10C

Product Datasheet

XFP-10SM31-10C

10Gbps XFP Transceiver, Single Mode, 10km Reach

Features

- Supports 8.0Gb/s to 11.1Gb/s bit rates
- Hot-pluggable XFP footprint, Built-in digital diagnosis
- Maximum link length of 10km with SMF
- 1310nm DFB laser and PIN photodiode
- XFP MSA package with duplex LC connector
- No reference clock required
- Single +3.3V power supply
- Power dissipation <1.5W
- Compatible with RoHS
- Temperature range
 Standard: -5 to +70°C
 Industrial: -40 to +85°C

Applications

- SONET OC-192&SDH STM-64 at 9.953Gbps
- 10GBASE-LR/LW 10G Ethernet
- 1200-SM-LL-L 10G Fibre Channel
- 10GE over G.709 at 11.09Gbps
- OC192 over FEC at 10.709Gbps
- Other optical links, up to 11.1Gbps

Description

The XFP module is compliant with the 10G Small Form-Factor Pluggable (XFP) Multi-Source Agreement (MSA), supporting data-rate of 8.0~11.1Gbps, and transmission distance up to 10km on SMF.

The transceiver module comprises a transmitter with 1310nm DFB laser and a receiver with a PIN photodiode. Transmitter and receiver are separate within a wide temperature range and offers optimum heat dissipation and excellent electromagnetic shielding thus enabling high port densities for 10 Gbps systems.

Absolute Maximum Ratings

Table 1- Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Any stress beyond the maximum ratings can result in permanent damage. The device specifications are guaranteed only under the recommended operating conditions.

Recommended Operating Conditions

Table 2- Recommended Operating Conditions

Parameter	<u> </u>	Symbol	Min	Typical	Max	Unit
	Standard		0		+70	°C
Operating Case Temperature	Extended	Тс	-10		+80	°C
	Industrial		-40		+85	°C
Power Supply Voltage @3.3V		Vcc	3.135	3.30	3.465	V
Power Supply Current		Icc			500	mA
Data Rate			8.0		11.1	Gbps

Optical and Electrical Characteristics

Table 3- Optical and Electrical Characteristics

Parameter		Symbol	Min	Typical	Мах	Unit	Notes
			Transmi	tter			
Centre	Wavelength	λc	1270	1310	1350	nm	
Spectral W	idth(-20dB)	Δλ			1	nm	
Side-Mode S	Side-Mode Suppression Ratio		30			dB	
Average (Average Output Power		-3		+2	dBm	1
Extinc	Extinction Ratio		6.0			dB	
Data Input Swing Differential		Vin	180		950	mV	2
Input Differential Impedance		Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
	Enable		0		0.8	V	

		Receive	er			
Centre Wavelength	λς	1260		1600	nm	
Receiver Sensitivity				-15	dBm	3
Receiver Overload		0.5			dBm	3
LOS De-Assert	LOSD			-16	dBm	
LOS Assert	LOS _A	-26			dBm	
LOS Hysteresis		0.5		4	dB	
Data Output Swing Differential	Vout	400	600	800	mV	2
LOS	High	2.0		Vcc	V	
-	Low			0.8	V	

Notes:

1. The optical power is launched into SMF.

2. Internally AC-coupled.

3. Measured with a PRBS 231-1 test pattern @9953Mbps, BER ≤1×10-12.

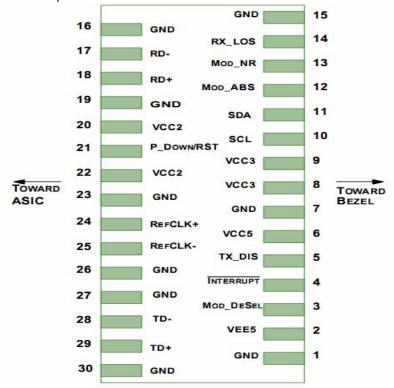
Pin Descriptions

Table 4- Pin Descriptions

Pin	Logic	Symbol	Name/Description	Re
1		GND	Module Ground	1
2		VEE5	Optional –5.2 Power Supply – Not required	
3	LVTTL-I	Mod- Desel	Module De-select; When held low allows the module to, respond to 2-wire serial interface commands	
4	LVTTL-O	Interrupt	Interrupt (bar); Indicates presence of an important condition which can be read over the serial 2-wire interface	2
5	LVTTL-I	TX_DIS	Transmitter Disable; Transmitter laser source turned off	
6		VCC5	+5 Power Supply – Not required	
7		GND	Module Ground	1
8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I	SCL	Serial 2-wire interface clock	2
11	LVTTL- I/O	SDA	Serial 2-wire interface data line	2
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present. Grounded in the module.	2
13	LVTTL-O	Mod_NR	Module Not Ready;	2
14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	2
15		GND	Module Ground	1

XFP-10SM31-10C

Product Datasheet


16		GND	Module Ground	1
17	CML-O	RD-	Receiver inverted data output	
18	CML-O	RD+	Receiver non-inverted data output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply – Not required	
21	LVTTL-I	P_Down/R	Power Down; When high, places the module in the low power stand-by mode and on the falling edge of P_Down initiates a module reset	
		ST	Reset; The falling edge initiates a complete reset of the module including the 2- wire serial interface, equivalent to a power cycle.	
22		VCC2	+1.8V Power Supply – Not required	
23		GND	Module Ground	1
24	PECL-I	RefCLK+	Reference Clock non-inverted input, AC coupled on the host board – Not required	3
25	PECL-I	RefCLK-	Reference Clock inverted input, AC coupled on the host board – Not required	3
26		GND	Module Ground	1
27		GND	Module Ground	1
28	CML-I	TD-	Transmitter inverted data input	
29	CML-I	TD+	Transmitter non-inverted data input	
30		GND	Module Ground	1

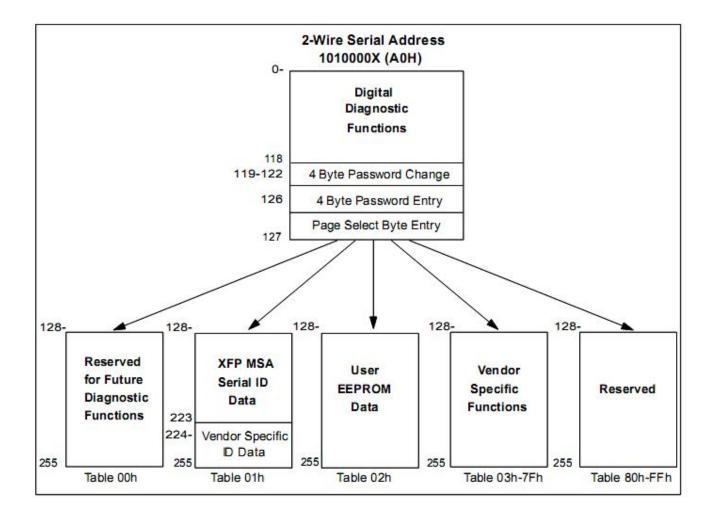
Notes:

1. Module circuit ground is isolated from module chassis ground within the module.

2. Open collector, should be pulled up with 4.7k – 10k ohms on host board to a voltage between 3.15Vand 3.6V.

3. A Reference Clock input is not required.

XFP-10SM31-10C

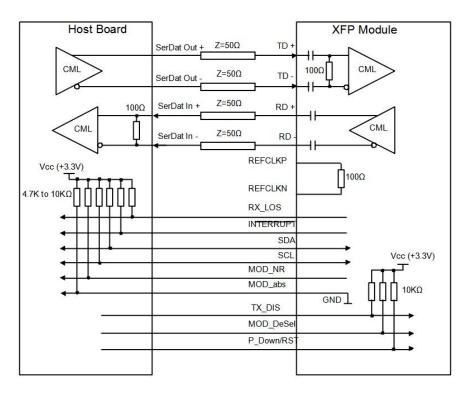

Product Datasheet

Management Interface

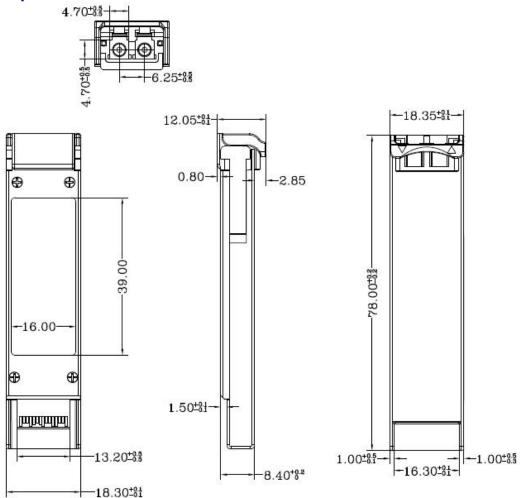
The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented.

The digital diagnostic memory map specific data field defines as following.



Recommended Host Board Power Supply Circuit


HO	OST Board		
Host+5V 4.7μ H	VCC5		
$0.1\mu f \pm 22\mu f \pm 0$	$0.1 \mu f \frac{1}{\Gamma}$		
= = = Host+3.3V 4.7μH	- VCC3		
$0.1\mu f \pm 22\mu f \pm 22\mu f \pm 12\mu f \pm 12\mu$			FP Module
Host+1.8V 4.7µH	VCC2	Connector	
$\begin{array}{c} 0.1\mu f \pm 22\mu f \pm \\ \hline \\ \text{Optional Host} \end{array}$	Ī	7	
$-5.2V 4.7\mu H \qquad 4.7\mu H \\ 0.1\mu f = 22\mu f = 22\mu f$	VEE5		
$= \frac{22\mu}{\Xi} = \frac{22\mu}{\Xi}$	Ŧ		

Recommended High-speed Interface Circuit

Mechanical Specifications

Ordering information Table 5- Ordering information

Part Number	Product Description
XFP-10SM31-10CC	8.0~11.1Gbps, 1310nm, SMF, 10km, 0°C ~ +70°C
XFP-10SM31-10CI	8.0~11.1Gbps, 1310nm, SMF, 10km, -40°C ~ +85°C

AscentOptics reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Edition: Apr. 2019 Published by Ascent Optics Co.,Ltd. Copyright © Ascent Optics All Rights Reserved.

E-mail: sales@ascentoptics.com

Web : http://www.ascentoptics.com